
University of Maryland
CMSC652 — Complexity Theory
Professor Jonathan Katz

Problem Set 1 — Solutions

1. Let us begin by showing that the first definition implies the second. If L meets the
first definition, then L ∈ ∪k≥0ntime(nk). So L ∈ ntime(ni) for some i. That means
we have a non-deterministic Turing machine ML running for time O(ni) such that if
x ∈ L then there is an accepting computation of ML(x), but if x 6∈ L then there is no
accepting computation of ML(x). Let RL be the relation:

RL

def
=

{

(x,w) |
w is a sequence of choices

that leads ML(x) to an accepting configuration

}

.

Clearly, RL is polynomially-bounded (since (x,w) ∈ RL implies |w| = O(|x|i)) and
decidable in polynomial time. Also, x ∈ L iff there exists a w such that (x,w) ∈ RL.
This proves that L meets the second definition.

For the other direction, say we have a language L and a polynomially-bounded relation
RL decidable in polynomial time such that x ∈ L iff there exists a w such that
(x,w) ∈ RL. Construct the following non-deterministic Turing machine ML deciding
L: given input x, guess a w of (at most) the appropriate length, and accept iff
(x,w) ∈ RL. It is not hard to see that if x ∈ L then then there is an accepting
computation of ML(x), but if x 6∈ L then there is no accepting computation of ML(x).
Furthermore, ML runs in polynomial time since RL is decidable in polynomial time.

2. We are given a language L which is NP-complete and in P. We need to show that if
L′ ∈ NP , we can decide L′ in polynomial time. Since L is NP-complete, there is a
function fL′ computable in polynomial time such that

x ∈ L′ ⇔ fL′(x) ∈ L.

This gives the following polynomial-time algorithm for L′: on input x, first compute
y = fL′(x); then, decide whether y ∈ L and accept only if this is true. Correctness of
this algorithm is immediate.

3. The language L of the problem is clearly in P: on input 〈M,x, 1t〉 simply simulate an
execution of M(x) for at most t steps and accept iff M(x) accepts within that time
bound. The simulation can be done in polynomial time (it is worth thinking through
the details and convincing yourself that this is true — note that you need to handle
both “small” and “large” values of t).

We also need to show a reduction from any language L′ ∈ P to our language L. We
know there exists a polynomial time machine ML′ deciding L in time ni for some
integer i. So our reduction fL′ — which, of course, depends on L′ — proceeds as
follows: on input x, output 〈ML′ , x, 1|x|

i

〉. You can check that fL′ can be computed
in polynomial time (in fact, time O(|x|i + |x|)).

1

4. This is rather simple. Let f1 be a Karp reduction from L1 to L2, and let f2 be a Karp
reduction from L2 to L3. This means that

x ∈ L1 ⇔ f1(x) ∈ L2 and x ∈ L2 ⇔ f2(x) ∈ L3.

Consider the function F (x)
def
= f2(f1(x)). Note that this can be computed in polyno-

mial time. (In particular, if f1 takes time at most ni1 to compute, and f2 takes time
at most ni2 to compute, then F takes time at most |f1(x)|i2 ≤ |x|i1i2 to compute,
which is polynomial.) Furthermore,

x ∈ L1 ⇔ f1(x) ∈ L2 ⇔ f2(f1(x)) ∈ L3,

as desired.

5. Assume we have a super-NP-complete language L. Since L ∈ NP , we know there
is a non-deterministic Turing machine ML deciding L in time at most ni for some

integer i. Let p(n)
def
= polyi(n), and let q be a polynomial such that q(n) = ω(p(n)).

By the non-deterministic time hierarchy theorem (which we did not cover in class, but
which you were allowed to assume for this problem) there exists a language L with
L′ ∈ ntime(q) but L′ 6∈ ntime(p).

Since L is super-NP-complete and L′ ∈ NP , there exists a Karp reduction f from
L′ to L such that f can be computed in time poly(n). Consider now the following
algorithm for deciding L′: on input x, compute y = f(x) and then run ML(y); ac-
cept iff the latter accepts. It is easy to see that this algorithm correctly decides L ′.
Furthermore, its running time is at most p(n). But this contradicts what we said
above.

2

