
University of Maryland
CMSC652 — Complexity Theory
Professor Jonathan Katz

Problem Set 2 — Solutions

1. Given an NP-complete language L such that

L = {x | ∃y : (x, y) ∈ RL}

(for some appropriate RL), define the NP language language Lpre as follows:

Lpre = {(x, y1) | ∃y2 : (x, y1 ◦ y2) ∈ RL}

(where ◦ denotes concatenation). Note that (x, y1) ∈ Lpre iff y1 is a prefix of a witness
y = y1 ◦ y2 that x ∈ L. Since L is NP-complete, there is a Karp reduction f from
Lpre to L.

We now describe how to reduce the search problem for L to the decision problem
for L. Assume we are given access to an oracle solving the decision problem for L.
Then, on input x, proceed as follows (we assume for simplicity that the witness y — if

one exists — has length exactly n
def
= |x|, but the algorithm can be suitably modified

when this is not the case):

Set y := ε (the empty string)
If f(x, y) 6∈ L then reject
Else, for i = 1 to n:

If f(x, y0) ∈ L set y := y0
Else set y := y1

Output y

2. We have already seen the solution to this problem in class.

3. (optional—unsolved problem) Sorry, I don’t have a solution either. The best I
can do is refer you to: http://en.wikipedia.org/wiki/Sudoku.

4. (a) Let coNP refer to the first definition (i.e., coNP =
{

L | L̄ ∈ NP
}

), and let
coNP ′ refer to the second definition (i.e., L ∈ coNP ′ if there exists a poly-time
computable [and polynomially-bounded] relation R such that x ∈ L ⇔ ∀y :
R(x, y)).1 We prove equivalence.

Let L ∈ coNP. Then L̄ ∈ NP by definition. So there exists a poly-time relation
RL̄ such that x ∈ L̄ ⇔ ∃y : (x, y) ∈ RL̄. This means that

x ∈ L ⇔ ∀y : (x, y) 6∈ RL̄.

1Technically speaking, “∀y” does not quantify over all strings y, but only all strings y of at most some
bounded (polynomial) length depending on the relation. We omit this for clarity.

1

Let RL be the complementary relation to RL̄ (i.e., x ∈ RL iff x 6∈ RL̄). Then RL

is poly-time computable (and polynomially-bounded; see the footnote); also:

x ∈ L ⇔ ∀y : (x, y) ∈ RL.

So L ∈ coNP ′.

Now let L ∈ coNP ′. Then we know there exists a poly-time relation RL such
that x ∈ L ⇔ ∀y : (x, y) ∈ RL. So, x ∈ L̄ iff ∃y : (x, y) 6∈ RL. Letting RL̄ be the
complementary relation to RL, we have

x ∈ L̄ ⇔ ∃y : (x, y) ∈ RL̄.

Since RL̄ is poly-time computable (and poly-bounded), we have L̄ ∈ NP and so
L ∈ coNP .

(b) Let L′ ∈ coNP . Then L̄′ ∈ NP. So there exists a Karp reduction f from L̄′

to our NP-complete language L such that x ∈ L̄′ ⇔ f(x) ∈ L. To determine
whether x ∈ L′ given oracle access to L, simply compute f(x) and ask whether
f(x) ∈ L. If it is, output “no”; if not, output “yes.” Correctness follows easily.

This is not a Karp reduction because here

x ∈ L′ ⇔ f(x) 6∈ L.

That is, we negate the answer received from the oracle. In a Karp reduction we
must return the same answer we get from the oracle.

(c) Say there exists a language L ∈ NP such that there is a Karp reduction from
every language L′ ∈ coNP to L. So for any L′ ∈ coNP we have a poly-time
function fL′ such that

x ∈ L′ ⇔ fL′(x) ∈ L.

Let RL be the relation for L. Then

x ∈ L′ ⇔ ∃y : (fL′(x), y) ∈ RL.

Define relation R′

L as follows:

(x, y) ∈ R′

L ⇔ (fL′(x), y) ∈ RL.

Note that R′

L is poly-time computable and polynomially-bounded; also,

x ∈ L′ ⇔ ∃y : (x, y) ∈ R′

L.

So, L′ ∈ NP and we conclude that coNP ⊆ NP . Applying the next problem
shows that coNP = NP .

Note that in part (b) we showed a Turing reduction from every language in coNP
to a language in NP . But it is widely believed that NP 6= coNP , so the result
we just proved does not hold for Turing reductions (at least as far as we know).
It is good to understand where the difference arises.

2

5. Assume coC ⊆ C. We want to show that C ⊆ coC. So, let L ∈ C. Then L̄ ∈ coC (by
definition), which implies L̄ ∈ C (by our assumption that coC ⊆ C). So L ∈ coC (by
definition), and we are done.

6. (Note: in class I gave an alternate solution for the case of coNP in terms of proofs

of non-membership which I find more intuitive. But many students seemed to find
the following approach more intuitive, and it has the advantage of unifying all the
solutions.)

For P, NP , and coNP we will use the same algorithm; just the analysis will be
different. (For NP there is also a much easier solution.) For a string x, let xi denote
the ith character in x and let xi→j denote the substring of x from position i to j

(inclusive). (When j < i then by convention xi→j is the empty string.) Given an
algorithm ML (of the appropriate type) for L, we decide L∗ as follows (we use ML

each time we want to know whether a given string is in L):

On input x of length n do:
If n = 0 then output “accept” (the empty string is always in L∗)
Maintain an array A[0], . . . , A[n], initially all 0
Set A[0] := 1
For i = 1 to n:

For j = 0 to i − 1:
If (A[j] = 1 and ML(xj+1→i) outputs 1), then A[i] := 1

If A[n] = 1 output “accept”, else output “reject”

The intuition is that A[i] = 1 iff x1→i ∈ L∗ (although, strictly speaking, this intuition
is only correct when L ∈ P; see below). It is clear that the above always runs in
polynomial time. Let us prove correctness in each case:

L ∈ P: In this case, ML always returns the correct answer. We claim that at the end
of the ith iteration of the outer loop, the following holds: for all 0 ≤ i′ ≤ i, A[i′] = 1
iff x1→i′ ∈ L∗ (correctness of the algorithm follows immediately). It can be verified
by inspection that this is true at the end of the first iteration of the outer loop. So
assume it is true at the end of the (i − 1)th iteration of the outer loop, and we will
prove it holds at the end of the ith iteration.

• If x1→i ∈ L∗, then there exists some j (with 0 ≤ j < i) such that x1→j ∈ L∗

and xj+1→i ∈ L. By our inductive assumption this means that A[j] = 1 and
xj+1→i ∈ L. In this case A[i] is indeed set to 1 when the inner loop reaches this
value of j.

• If A[i] gets set to 1, then at some point in the inner loop we have found a value j

such that A[j] = 1 and xj+1→i ∈ L. By our inductive assumption this means
that x1→j ∈ L∗; this then implies that xi is indeed in L∗, so A[i] is set correctly.

L ∈ NP: Our algorithm ML now has the following weaker guarantees: when x ∈ L

then there is an execution of ML(x) that outputs 1; when x 6∈ L, then ML(x) always
outputs 0. On the other hand we also need only prove similar guarantees about our

3

above algorithm. Define an array B[0], . . . B[n] such that B[i] = 1 iff x1→i ∈ L∗. We
claim now that at the end of the ith iteration of the outer loop, the following holds:
(1) it is always the case that for all i′ ≤ i, if B[i′] = 0 then A[i′] = 0; and (2) there
is an execution of the algorithm such that A[i′] = B[i′] for all i′ ≤ i. (Note that
correctness follows once we prove this.) As before, the base case i = 1 can be verified
by inspection. So assume the above are true at the end of the (i − 1)th iteration of
the outer loop, and we will prove they hold at the end of the ith iteration.

• If A[i] gets set to 1 in any execution, then at some point in the inner loop we have
found a value j such that A[j] = 1 and ML(xj+1→i) outputs 1. By our inductive
assumption, A[j] = 1 always implies B[j] = 1 and so x1→j ∈ L∗. Furthermore,
we must have xj+1→i ∈ L. So indeed x1→i ∈ L∗. (This proves that if B[i] = 0
then A[i] = 0 in every execution.)

• Assume B[i] = 1. By our inductive assumption there is some execution in which
A[i′] = B[i′] for all i′ < i. Let us focus only on such executions. Since x1→i ∈ L∗,
there exists some j (with 0 ≤ j < i) such that x1→j ∈ L∗ and xj+1→i ∈ L. So
A[j] = 1 in the executions where everything goes right, and furthermore there is
some execution of ML(xj+1→i) that outputs 1. Taken together, this means there
is some execution of our algorithm that results in A[i] being set to 1.

L ∈ coNP : Our algorithm ML now has the following guarantees: when x ∈ L then
ML(x) always outputs 1; when x 6∈ L, then there is an execution of ML(x) that
outputs 0. Define an array B[0], . . . B[n] exactly as before. We claim now that at the
end of the ith iteration of the outer loop, the following holds: (1) it is always the case
that for all i′ ≤ i, if B[i′] = 1 then A[i′] = 1; and (2) there is an execution of the
algorithm such that A[i′] = B[i′] for all i′ ≤ i. (Note that correctness follows once we
prove this.) As before, the base case i = 1 can be verified by inspection. So assume
the above are true at the end of the (i − 1)th iteration of the outer loop, and we will
prove they hold at the end of the ith iteration.

• Assume B[i] = 1, so x1→i ∈ L∗. Then there exists some j (with 0 ≤ j < i) such
that x1→j ∈ L∗ (and hence B[j] = 1) and xj+1→i ∈ L. By our inductive assump-
tion, A[j] = 1 in all executions. Furthermore, ML(xj+1→i) always outputs 1. So
A[i] always gets set to 1 and condition (1) holds.

• Assume A[i] gets set to 1 in every execution. We want to show that this implies
B[i] = 1. By our inductive assumption there is some execution in which A[i′] =
B[i′] for all i′ < i; let us focus only on such executions. If A[i] gets set to 1 in
every execution, that means it gets set to 1 even in executions where everything
has gone right so far and ML gets the right answer every time in the current
iteration of the loop. But then we have found a value j with A[j] = 1 (hence
B[j] = 1 and x1→j ∈ L∗) and where ML(xj+1→i) outputs 1 (hence xj+1→i ∈ L).
But this means x1→1 ∈ L and so B[i] = 1.

4

