
Notes on Complexity Theory: Fall 2005 Last updated: September, 2005

Lecture 1

Jonathan Katz

1 Review

We began class with a quick review of some basic concepts that students have (presumably)
already seen in an earlier course. These included:

• Turing machines. Deciding/recognizing languages.

• Time/space complexity of a Turing machine. (We also pointed out the subtlety in
defining sub-linear space bounds for Turing machines.)

• We mentioned the speed-up theorem, mainly to justify ignoring constant factors.

• The classes time(f(n)), space(f(n)), and P.

2 Preliminaries

We first give some definitions of “well-behaved” functions. Note that various (subtly differ-
ent) definitions appear in the literature, but the following will be our working definitions
throughout the course.

Definition 1 A function f :
�

→
�

is space constructible if f(n) is non-decreasing and
there exists a Turing machine which on input 1n outputs the binary representation of f(n)
without ever exceeding O(f(n)) space. Note that if f is space constructible, then there exists
a Turing machine which on input 1n marks off exactly f(n) tape cells on its work-tape (say,
using a special symbol) without ever exceeding O(f(n)) space. ♦

Definition 2 A function f :
�

→
�

(with f(n) ≥ n for all n) is time constructible if it is
non-decreasing and there exists a Turing machine running in time O(f(n)) which on input
1n outputs the binary representation of f(n). Note that if f is time constructible, then
there exists a Turing machine which on input 1n runs for O(f(n)) steps and then halts. ♦

Most “natural” functions one encounters (unless one is specifically interested in counterex-
amples) are space and time constructible.

The following is a simple but useful fact:

Fact 1 Let M be a Turing machine using space s(n) on inputs of length n. The number of
configurations CM (n) of M on any fixed input of length n is bounded by:

CM (n) ≤ |QM | · n · s(n) · |ΣM |s(n), (1)

where QM are the states of M and ΣM is the alphabet of M . In particular, when s(n) =
Ω(log n) we have CM (n) = 2O(s(n)).

1-1

Proof The first term in Eq. (1) comes from the number of states, the second from the
possible positions of the input head, the third from the possible positions of the work-tape
head, and the last from the possible values stored on the work tape. (Note that since
the input is fixed and the input tape is read-only, we do not need to consider all possible
length-n strings that can be written on the input tape.)

Two important facts follow from the above:

Lemma 2 If the computation of M(w) exceeds CM (|w|) steps, then M(w) will run forever.

Proof This follows from the simple observation that if a configuration is ever repeated,
then M goes into an infinite loop.

Lemma 3 Let s(n) ≥ log n be space constructible. If there exists a machine M which
recognizes a language L using space s, there exists a machine M ′ which decides L using
space O(s) (i.e., M ′ always halts).

Proof We construct M ′ which simulates M but only for at most CM (n) steps (where n
is the input length), using a counter to keep track of how many steps have been taken so
far. By the previous lemma, M ′ decides the same language that M recognizes. The space
used by M ′ on any input w of length |w| = n is exactly the space used by M on that input,
plus the additional space used to store the counter. We already know that M uses space
O(s(n)). Since s(n) ≥ log n, the counter requires space log CM (n) = O(s(n)) (by Fact 1)
and so the total space used by M ′ is O(s(n)).

As a consequence, without loss of generality we may consider space-bounded Turing
machines which always halt (except when we briefly discuss sub-logarithmic space classes).

Corollary 4 If s(n) = Ω(log n) is space constructible, then space(s(n)) ⊆ time(2O(s(n))).

Proof Let L ∈ space(s(n)) and say M accepts L and uses space O(s(n)). By the previous
lemma, we may assume M halts on all inputs. Since M would go into an infinite loop if
it ever repeats a configuration, the maximum running time of M on inputs of length n is
CM (n) = 2O(s(n)).

For completeness, we mention the following “counterpart” to the above:

Lemma 5 For any s(n) we have time(s(n)) ⊆ space(s(n)).

Proof This follows from the trivial observation that a machine cannot write on more
than one work-tape cell per move.

The above can be improved to time(s(n)) ⊆ space(s(n)/ log s(n)); we may see a proof of
this in a later class.

1-2

3 Hierarchy Theorems

We focus first on the case of space bounds, since the result is easier to prove. We remark that
we do not prove the tightest possible statement; the reader interested in further discussion
is referred to [3, Chap. 12].

Theorem 6 Let G be space constructible, and g(n) = Ω(log n). If g(n) = o(G(n)),
then there exists a language L such that L ∈ space(G(n)) but L 6∈ space(g(n)). Thus,
space(g(n)) is a proper subset of space(G(n)).

Proof We define L by giving a Turing machine ML (using space O(G(n))) that decides
it. The tricky part will be to show that no Turing machine running in space O(g(n)) decides
it. ML does the following on input w of length |w| = n:

1. If w is not of the form 〈M〉10∗ for some Turing machine M (w.r.t. some fixed encoding),
reject.

2. Compute G(n), and mark off this much space twice on the work tape. The first
G(n) cells will be called the workspace, and the second G(n) cells will be called the
counterspace.

3. Run M(w) for at most 2G(n) steps using the workspace to perform the simulation of
M , and using the counterspace to keep track (in binary) of the number of steps taken
in the simulation of M . If the allotted time is exceeded (i.e., the counter reaches the
value 2G(n)), or if the computation of M(w) tries to go beyond the allotted workspace,
reject. Otherwise, if M(w) accepts, reject, and if M(w) rejects, accept.

By construction, ML uses total space O(G(n)) (since G is space constructible).
We now need to show that no machine using space O(g(n)) can decide L. Assume the

contrary. Then there exists a machine M deciding L and running in space g̃(n) = O(g(n)).
Without loss of generality, we may assume that M uses only a single work-tape and a binary
tape alphabet (this is actually not very hard to see, but the reader is referred to [3, Chap.
12] for details). Let c represent the space “overhead” needed (by ML) to simulate M(w);
i.e., this is the space used to simulate the computation of M(w) minus the space used by
M itself on input w. (This overhead can be used to keep track of what state the simulated
copy of M is in, for example.) A key point is that c depends on M but not on w. (You
should convince yourself that this is true; note that we allow ML to use a non-binary tape
alphabet and multiple tapes, if needed. So the first step of ML might be to copy 〈M〉 to
a work-tape, and then the only additional space needed is to store the current state of the
simulated copy of M .)

Now, choose n0 large enough so that for n ≥ n0 we have g̃(n) + c < G(n) and CM (n) <
2G(n); such an n0 exists because g̃(n) = o(G(n)) and g̃(n) = Ω(log n). When we run ML

on input w̃
def
= 〈M〉10n0 , the machine ML allots enough space and time to run M(w̃) to

completion. But now ML outputs the opposite of whatever M outputs, and so ML and M
cannot decide the same language.

The analogous result for the case of time complexity classes is proved in a similar manner,
but the details are more difficult and there is a slight complication:

1-3

Theorem 7 Let G be time constructible, and g(n) ≥ n for all n. If g(n) log g(n) = o(G(n)),
then there exists a language L such that L ∈ time(G(n)) but L 6∈ time(g(n)).

Proof The high-level structure of the proof is the same as in the proof of the previous
theorem. We define L by giving a Turing machine ML (using time O(G(n))) that decides
it. ML does the following on input w of length |w| = n:

1. If w is not of the form 〈M〉10∗ for some Turing machine M , reject.

2. We use five tapes. The first four tapes are used to simulate an execution of M on
input w (one tape is used to keep a copy of M , one tape records the state of the
simulated copy of M , and the other two tapes will be used as the workspace for the
simulated copy of M). The last tape is used to run, in parallel, a machine that runs
for exactly G(n) steps. If this second machine halts and the simulation of M is not
done, reject.

3. Otherwise, if the simulated copy of M finishes then: if M(w) accepts, reject and if
M(w) rejects, accept.

By construction, ML runs in time O(G(n)) + O(n) = O(G(n)).
We now want to show that no machine M running in time O(g(n)) can decide L. A

subtlety is that such a machine M might use more than two work-tapes, but ML has a
fixed number of work-tapes (which happens to be five in the above description). However,
it is known that if there exists a machine deciding a language L in time O(g(n)) (using
any number of tapes), then there exists a two-tape machine deciding L in time g̃(n) =
O(g(n) log g(n)); see [3, Chap. 12]. (We may also assume without loss of generality that
this machine uses a binary tape alphabet.) Let M ′ be such a machine.

Again, there will be some (time) overhead in the simulation of M ′ by ML. This overhead
is now a multiplicative one: to simulate a step of M ′, the machine ML might have to scan
through all of M ′ (and perform multiple scans over the current state of the simulated copy
of M ′). As before, however, this overhead depends on M ′ but is independent of w. In
summary, there exist constants c1, c2 such that an execution of M ′ that runs in time t(n)
can be simulated in time c1t(n) + c2.

Now, choose n0 large enough so that for n ≥ n0 we have c1g̃(n) log g̃(n) + c2 < G(n);
such an n0 exists by the assumption of the theorem. As before, when we run ML on input

q̃
def
= 〈M ′〉10n0 , machine ML allots enough time to run M ′(w̃) to completion. But now ML

outputs the opposite of whatever M ′ outputs, and so ML and M ′ cannot decide the same
language.

It is unknown whether the above is optimal. Similarly, it is unknown whether a better
simulation of k-tape Turing machines by two-tape Turing machines is possible.

4 Introduction to NP

Recall the definition of the class P: a language L is in P if there exists a Turing machine ML

and a polynomial p such that (1) ML(x) runs in time p(|x|), and (2) x ∈ L iff ML(x) = 1
(where we view an output of “1” as acceptance and an output of “0” as rejection).

1-4

The typical way of defining NP is by introducing the notion of non-deterministic Turing
machines. An alternate, arguably more intuitive, definition is given by the following: a
language L is in NP if there exists a Turing machine ML and a polynomial p such that
(1) ML(x,w) runs in time p(|x|), and (2) x ∈ L iff there exists a w such that ML(x,w) = 1.
We remark that in condition (1) it is essential that the running time of ML be measured
in terms of the length of x only (an alternate approach is to require the length of w to be
at most p(|x|) in condition (2)). For an NP-language L, we will sometimes speak of the
relation RL defined by: RL(x,w) = 1 iff ML(x,w) = 1. This gives the following, alternate
way of thinking about NP : namely, a language L is in NP if there exists a language RL ∈ P
and a polynomial p such that1

x ∈ L ⇔ ∃w : (x,w) ∈ RL and |w| ≤ p(|x|).

It is a good exercise to show that the “traditional” definition of NP (i.e., in terms of
non-determinism) is equivalent to the definition(s) above.

For the rest of this lecture, we let R denote a relation which is polynomially bounded
(namely, there exists a polynomial p such that if (x,w) ∈ R then |w| ≤ p(|x|)) as well as
polynomially-verifiable (i.e., R ∈ P). Note that any such R defines the NP-language LR

given by:

LR

def
= {x | ∃w : (x,w) ∈ R}

(this is the “dual” of the conversion from an NP-language L to a relation RL described
earlier, although we remark that there are multiple relations R which define the same
language LR).

5 NP Completeness

We first discuss the notion of reductions. We first define a Cook(-Turing) reduction:

Definition 3 A Cook(-Turing) reduction from a language L to a language L′ is a polynomial-
time oracle machine M such that, if M ′ is any machine that decides L′, then MM ′

decides
L. We express the above by writing L ≤P

T
L′. ♦

Another important, yet immediate, result is that (1) if there is a Cook reduction from L to
L′ and (2) L′ ∈ P, then L ∈ P as well. Note, however, that this is not believed to be the
case for languages in NP. For example, every coNP language is Cook-reducible to an NP
language, but it is not believed that coNP ⊆ NP.

A more restricted notion of a reduction is given next:

Definition 4 A Karp reduction (also called a many-to-one reduction) from a language L
to a language L′ is a polynomial-time computable function f such that x ∈ L iff f(x) ∈ L′.
We express this by writing L ≤P

m L′. ♦

Note that any Karp reduction provides an immediate Cook reduction as well. However,
here it is true that if there is a Karp reduction from L to L′ and L′ ∈ NP, then L ∈ NP .

Finally, we also define the following useful notion:

1We remark that we now need the length restriction on w because the machine MRL
that decides RL is

allowed, by definition, to run in time polynomial in |x| + |w| on input (x,w).

1-5

Definition 5 A Levin reduction from relation R1 to relation R2 is a triple of polynomial-
time computable functions f, g, h such that:

– (x, y) ∈ R1 ⇒ (f(x), g(x, y)) ∈ R2

– (f(x), z) ∈ R2 ⇒ (x, h(x, z)) ∈ R1

The above, in particular, imply that x ∈ LR1
⇔ f(x) ∈ LR2

. ♦

It may be verified that all the above reductions are transitive.

5.1 Defining NP Completeness

With the above in place, we define NP-hardness and NP-completeness:

Definition 6 A language L is NP-hard if for every language L′ ∈ NP , there is a Karp
reduction from L′ to L. A language L is NP-complete if it is NP-hard and also L ∈ NP .

♦

We remark that one could also define NP-hardness via Cook reductions. However, this
seems to lead to a different definition. In particular, oracle access to any coNP-complete
language is enough to decide NP, meaning that any coNP-complete language is NP-hard
w.r.t. Cook reductions. On the other hand, if a coNP-complete language were NP-hard
w.r.t. Karp reductions, this would imply NP = coNP (which is considered to be unlikely).
(Further discussion of this issue can be found in [2, Chapter 7.1].)

We show the “obvious” NP-complete language:

Claim 8 Define language L via:

L =

{

〈M,x, 1t〉 |
M is a non-deterministic T.M.
which accepts x within t steps

}

.

Then L is NP-complete.

Proof It is not hard to see that L ∈ NP. Given 〈M,x, 1t〉 as input, non-deterministically
choose a legal sequence of up to t moves of M on input x, and accept if M accepts. This
algorithm runs in non-deterministic polynomial time and decides L.

To see that L is NP-hard, let L′ ∈ NP be arbitrary and assume that non-deterministic
machine M ′

L′ decides L′ and runs in time nc on inputs of size n. Define function f as follows:
given x, output 〈M ′

L′ , x, 1|x|
c

〉. Note that (1) f can be computed in polynomial time and
(2) x ∈ L′ ⇔ f(x) ∈ L. We remark that this can be extended to give a Levin reduction
(between RL and RL′ , defined in the natural ways).

We remark that one can “adapt” the above language to give a language which is NP-
hard but not in NP . Specifically, consider the language

L =

{

〈M,x〉 |
M is a non-deterministic T.M.

which accepts x

}

.

Bibliographic Notes

The proofs of the space and time hierarchy theorems are adapted from [4, 3]. See also [1,
Lecture 4] for more details regarding these proofs (and some discussion of how to efficiently
simulate the computation of another Turing machine). Section 5 is based on [1, Lecture 2].

1-6

References

[1] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

[2] S. Homer and A.L. Selman. Computability and Complexity Theory. Springer, 2001.

[3] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley Publishing Company, 1979.

[4] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.

1-7

