
Notes on Complexity Theory: Fall 2005 Last updated: December, 2005

Lecture 12

Jonathan Katz

1 Basics of PCP

Work on interactive proof systems has motivated a look at the efficiency of non-interactive proof
systems (i.e., the classes NP and the randomized variant MA). One specific question of interest
turns out to be the following: how many bits of the proof (sent by the prover) need to be read
by the verifier? (Note that in the “default” non-interactive proof for a language L ∈ NP , the
prover sends the witness w that x ∈ L and the verifier must read the entire witness in order to
be convinced. The question is whether we can get away with having the verifier read fewer bits.
Turning as usual to the analogy with mathematical proofs, this would be analogous to being able
to verify the proof of a mathematical theorem by reading only a couple of letters in the proof!)
Amazingly, we will see that for L ∈ NP it is possible to have the verifier read only a constant

number of bits.
Abstracting the above ideas, we define the class PCP of probabilistically-checkable proofs:

Definition 1 Let r, q be arbitrary functions. We say L ∈ PCP(r(·), q(·)) if there exists a randomized
polynomial-time verifier A such that:

• Aπ(x) uses (at most) r(|x|) random coins and reads (at most) q(|x|) bits of π.1 (The running
time of A is also measured as a function of |x| — note that |π| may be exponential in |x| (cf.
footnote 1).)

• If x ∈ L then there exists a π such that Pr[Aπ(x) = 1] = 1.

• If x 6∈ L then for all proofs π we have Pr[Aπ(x) = 1] ≤ 1/2.

If R,Q are classes of functions, then PCP(R(·), Q(·))
def
= ∪r∈R,q∈QPCP(r(·), q(·)). For convenience,

we also sometimes let PCP
def
= PCP(poly, poly). ♦

Some remarks are in order:

• The soundness error can, as usual, be reduced by repetition. For exponentially-small error,
this does not affect the class PCP; however, such repetition affects the parameters r, q. (E.g.,
if L ∈ PCP(r, q) by the above definition then L ∈ PCP∗(|x| · r, |x| · q) if by PCP∗ we mean that
we require soundness error 2−|x|.)

• One can also relax the completeness condition (as long as there is an inverse polynomial gap
between the acceptance probabilities when x ∈ L and when x 6∈ L). As with the case of
soundness, this does not affect the class PCP (via a similar argument as in the case of MA)
but does affect the parameters.

1Formally, A has a special oracle tape on which it can write any index i and then obtain the ith bit of π in the
next step. Since A runs in polynomial time (in |x|), the length of i is polynomial and so it is only meaningful for |π|
to be at most exponential in |x|.

12-1

• One can view a probabilistically-checkable proof as a form of interactive proof where the
(cheating) prover is restricted to committing to its answers in advance. Since the power
of the cheating prover is restricted but the abilities of an honest prover are unaffected,
PCP(poly, poly) is at least as powerful as IP. In particular, since PSPACE ⊆ IP it follows
that PSPACE ⊆ PCP(poly, poly).

• The above definition allows A to query bits of π adaptively (i.e., it may request to read the
ith bit, and then based on this value determine with bit j it wants to read next). We will
only consider non-adaptive verifiers. For future reference, however, we note that any adaptive
verifier making a constant number of queries can be converted into a non-adaptive verifier
which still makes only a constant (but larger) number of queries.

• The above definition allows the proof π to be different for every x ∈ L. Without loss of
generality, however, we may assume a single proof that works for all x ∈ L. The reason is
that we can simply concatenate all the individual proofs together, and the verifier can still
access the relevant proof by specifying a poly-size index.

1.1 Toward Understanding the Power of PCP

An easy observation is that PCP(0, poly) = NP . In fact, we have the following stronger result:

Lemma 1 PCP(log, poly) = NP.

Proof Containment of NP in PCP(log, poly) is obvious. For the reverse containment, let L ∈
PCP(log, poly) and let A be the verifier for L. For given x ∈ L, we will show how to construct a
witness for x; the NP-machine deciding L will follow naturally. Note that we cannot simply use
a “good” proof πx (which is guaranteed to exist since x ∈ L) because πx may be exponentially
long. However, we can use a “compressed” version of πx. In particular, imagine running A for
all possible settings of its O(log n) random coins (here, n = |x|). This results in a set S of only
polynomially-many indices at which A potentially reads πx (for each setting of its random coins,
A reads poly-many indices; there are only 2O(log n) = poly(n) settings of the random coins). These
queries/answers {(i, πi)}i∈S will be our NP witness. Our NP algorithm for L is simple: on input
a witness w of the above form, simulate the computation of A (in the natural way) for all possible
settings of its random coins. Accept only if A accepts in all these executions. (If A tries to read
an index which is not present in w, we count this as a rejection by A.) It is not hard to see that
this indeed gives a NP machine deciding L.

At the other extreme, if we allow no queries to π we obtain PCP(poly, 0) = coRP (at least if we
require perfect completeness, as we do in our definition). This, along with the previous result, shows
that we only “gain” something from our definition of PCP if we consider the power of randomness
and proof queries in tandem. Doing so yields the following deep (and important) result:

Theorem 2 (The PCP Theorem) NP = PCP(log, O(1)).

We remark that the number of queries can be taken to be a fixed constant which is the same for all
NP-languages L (and not, e.g., a constant that depends on the language but not the input length).
To see that this follows from the theorem, note that the theorem implies SAT ∈ PCP(c log n, t)
for some constants c, t (where n is the length of the input formula). Now for any L ∈ NP we can
construct the PCP system in which the verifier first applies a Karp reduction to the input to obtain

12-2

a 3CNF formula φ, and then runs the PCP system for SAT on “input” φ. If the Karp reduction
maps n-bit inputs to nk-bit formulae (for some constant k), this proves that L ∈ PCP(ck log n, t).

The above characterization is tight under the assumption that P 6= NP, since P 6= NP implies
NP 6⊆ PCP(o(log), o(log)) (Arora and Safra [2, Sec. 1.2.2] observe that this follows from results of
Feige, et al. [3]).2 Also, although not explicit in the theorem, the PCP theorem also shows how to
efficiently convert any witness w for a given x (with respect to a given NP relation R) into a proof
πx for which the corresponding PCP verifier always accepts.

For completeness, we state the following result (which we will not explore any further):

Theorem 3 NEXP = PCP(poly, poly).

2 PCP and Inapproximability

Assuming P 6= NP, we know that we cannot hope to exactly solve NP-complete problems in
polynomial time. However, we can in general hope to perhaps find an approximate solution to the
given problem. Unfortunately, the PCP theorem limits the extent to which we can approximate a
number of different NP-complete problems.

As an example, we will show now that there exists some constant α such that it is infeasible (in
polynomial time) to approximate to within a multiplicative factor of α the maximum number of
satisfiable clauses in a 3SAT formula. We begin with some definitions; in what follows we restrict

our attention to 3CNF formulae φ.

Definition 2 For a formula φ and an assignment ~b to the variables in φ, let sat~b(φ) denote the
fraction of clauses satisfied by the given assignment. Let max-sat(φ) = max~b{sat~b(φ)}. ♦

Note that max-sat(φ) = 1 iff φ is satisfiable. Also, for any formula φ we have max-sat(φ) ≥ 7/8
(since a random assignment satisfies any given clause in φ with probability at least 7/8).

Definition 3 A value k is an α-approximation for φ if k ≤ max-sat(φ) ≤ α · k. Polynomial-
time algorithm A is an α(·)-approximation algorithm for 3SAT if A(φ) always outputs an α(|φ|)-
approximation for φ. ♦

A 1-approximation algorithm for 3SAT would obviously imply that we could solve 3SAT in polyno-
mial time. What can we say about the existence of a β-approximation algorithm for some constant
β > 1? Note that by what we have said above, it is trivial to find an 8/7-approximation in
polynomial time by always outputting the answer “7/8.” Can we do better?

Toward showing that there is a limit to how well we can do (assuming P 6= NP), we introduce
the notion of an amplifying reduction.

Definition 4 A c-amplifying reduction of 3SAT is a poly-time function f mapping the set of 3CNF
formula to itself and such that:

• If φ is satisfiable, then f(φ) is satisfiable. I.e., if max-sat(φ) = 1 then max-sat(f(φ)) = 1.

• If φ is not satisfiable, then every assignment to the variables in f(φ) satisfies at most a
c-fraction of the clauses in f(φ). I.e., if max-sat(φ) < 1 then max-sat(f(φ)) < c.

We will say that 3SAT has an amplifying reduction if it has a c-amplifying reduction for some
c < 1. In particular, an amplifying reduction is a Karp reduction. ♦

It is fairly immediate to show that an amplifying reduction for 3SAT implies a hardness-of-
approximation result for max-sat:

2It is possible, however, that NP ⊆ PCP(o(log), log).

12-3

Lemma 4 Assume P 6= NP and that 3SAT has a c-amplifying reduction. Then there is no c−1-

approximation algorithm for 3SAT.

Proof Assume to the contrary that there does exist a c−1-approximation algorithm A for 3SAT.
We can then deterministically solve SAT in polynomial time as follows: on input formula φ, run
A(f(φ)) to obtain output k. If k ≥ c, output 1; otherwise, output 0. To see correctness of this
algorithm, note that when φ is satisfiable then max-sat(f(φ)) = 1 and so the output k of A must
satisfy

k ≥ max-sat(f(φ))/c−1 = c.

On the other hand, when φ is not satisfiable then max-sat(f(φ)) < c and so the output k of A must
satisfy k < c. The claim follows.

To establish the connection between the PCP theorem and inapproximability, we show that the
PCP theorem implies the existence of an amplifying reduction for 3SAT. In fact, the implication
goes in both directions, thus showing that one way to prove the PCP theorem is to construct an
amplifying reduction for 3SAT.

Lemma 5 NP ⊆ PCP(log, O(1)) if and only if 3SAT has an amplifying reduction.

Proof One direction is easy. If 3SAT has an amplifying reduction f , then we can construct the
following PCP system for 3SAT: On input φ, the verifier computes f(φ). The proof will contain
a satisfying assignment for f(φ) (i.e., position i of the proof contains the assignment to xi). To
check the proof, the verifier chooses a random clause in f(φ), queries for the assignments to the 3
variables of that clause, and then determines whether that clause is satisfied for those settings of
the variables. It accepts if and only if that is the case.

If φ is satisfiable then f(φ) is satisfiable and so a valid proof (consisting of a satisfying assignment
for f(φ)) exists. On the other hand, if φ is not satisfiable then at most a c-fraction of the clauses in
f(φ) are satisfiable (for any assignment to the variables), and so the verifier accepts with probability
at most c regardless of the proof. Since c is a constant, repeating the above procedure a constant
number of times (and accepting only if each procedure would lead to acceptance) will give the
desired soundness error 1/2 using a constant number of queries. Also, the number of random bits
needed to select a random clause is logarithmic in |φ| since |f(φ)| is polynomial in |φ|.

The other direction is the more interesting one. If NP ⊆ PCP(log, O(1)) then, in particular,
SAT ∈ PCP(log, O(1)). Let A be a verifier for such a proof system for SAT, using c log n random
coins (on input φ with |φ| = n) and making t queries. We now describe our amplifying reduction
f : on input a SAT instance φ (with |φ| = n) do:

• For each setting r of the random coins for A, do the following:

– Determine the t indices q1, . . . qt that A(φ; r) would query in the proof when using random
coins r (recall that without loss of generality these indices are chosen non-adaptively).

– Run A(φ; r) on all possible settings for these bits of the proof to determine when A
accepts in this case. In this way, one may define a CNF formula φ̂r on the variables
xq1

, . . . , xqt
such that φ̂r evaluates to true exactly when A(φ; r) would accept. (We

stress that variables of the type xqi
are the same for the different settings of r.) The

important point is that the number of clauses in φ̂r is constant since t is constant. Using
auxiliary variables (different for each r), we may convert φ̂r to an equivalent 3CNF
formula φr. The number of clauses in φr is constant as well.

12-4

• Set the output f(φ) to be
∧

r∈{0,1}c log n φr.

Note that the above can be implemented in polynomial time and, in particular, both the number
of clauses an the number of variables in f(φ) are polynomial.3

We claim that f , as given above, is an amplifying reduction. It is not hard to see that if φ is
satisfiable then f(φ) is (this follows from perfect completeness of the PCP system). On the other
hand, assume φ is not satisfiable. Then for any setting of the variables in f(φ), at least half of
the {φr} are not satisfied (this follows from soundness of the PCP system). In each unsatisfied φr

there is at least one unsatisfied clause. Let t′ = O(1) denote the maximum number of clauses in
any of the {φr}. It follows that for any setting of the variables, the fraction of unsatisfied clauses
in f(φ) is at least

β
def
=

2|r|−1

2|r| · t′
=

1

2t′
,

and so the fraction of satisfied clauses is at most 1 − β. Since β is a constant greater than 0, this
means that f is a c-amplifying reduction for any c ∈ (1 − β, 1).

2.1 Inapproximability of Clique

An alternate way of viewing approximation problems is to view them as promise problems. Taking
the case of clique for example, we may define the promise problem CLIQUE α,β as consisting of
“yes” instances which are graphs whose largest clique contains at least α(n) vertices (here, n is
the total number of vertices in the graph), and “no” instances which are graphs whose largest
clique contains at most β(n) vertices. We have the following nice theorem, which implies that it is
NP-hard to approximate the size of the largest clique of a graph to within a factor better than 2:

Theorem 6 There exists a function α = Θ(n) such that CLIQUEα,α/2 is NP-hard.

Proof Given an NP-language L, we show a transformation T that takes an input x and outputs
a graph G such that the following hold: if x ∈ L, then T (x) is a “yes” instance of CLIQUE α,α/2

while if x 6∈ L then T (x) is a “no” instance for CLIQUE α,α/2. We stress that α is fixed, and so is
the same for all NP-languages L.

By the PCP theorem, there exists a constant t such that for any L ∈ NP there is a poly-time
verifier A which on input x makes t queries using O(log |x|) coin tosses. Let r1, . . . , rm denote the
sequence of possible coin tosses of A (note that m is polynomial in |x|), and let q i

1, . . . , q
i
t denote

the queries made on random coin tosses ri. Let ai
1, . . . , a

i
t be a sequence of possible answers. Define

a graph Gx as follows:

Vertices For each set of random coins ri and each possible set of answers {ai
j}

t
j=1, the tuple

(ri, (q
i
1, a

i
1), . . . , (q

i
t, a

i
t))

is a vertex if and only if A would accept x when using random tape ri and receiving these
answers to its queries.

Since ri and x uniquely determine the queries, there are at most m · 2t vertices in Gx.

3Even though the indices of the variables (i.e., the qi) are polynomial length, at most 2c log n · t indices are ever
potentially queried by A.

12-5

Edges Two vertices v and u have an edge between them if and only if they are consistent. (Two
vertices are not consistent if they contain different answers to the same query.) Note that if
u, v contain the same random tape ri then they are inconsistent and so do not share an edge.

Finally, add isolated vertices (if necessary) to obtain a graph with exactly m · 2t vertices.

Define α(n)
def
= n/2t, so that α(m · 2t) = m. We show that Gx satisfies our desiderata:

– When x ∈ L, there exists a proof π for which A accepts for every setting of its random tape (this
follows due to perfect completeness). It is not hard to see that this implies the existence of a clique
in Gx of size at least m.

– When x 6∈ L, the existence of a clique with more than m/2 nodes would imply the existence
of a proof that would cause A to accept with probability greater than 1/2, a contradiction to the
soundness of the PCP system.

Bibliographic Notes

This lecture is based on [4, Lect. 12]. The PCP theorem as stated here was proved in [1, 2], but
these papers represent the culmination of a long sequence of work in this area. The application of
the PCP theorem to inapproximability (and, in particular, the connection to the clique problem
shown in these notes) is due to [3].

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof Verification and Intractability
of Approximation Problems. J. ACM 45(3): 501–555, 1998.

[2] S. Arora and S. Safra. Probabilistic Checking of Proofs: A New Characterization of NP . J.

ACM 45(1): 70–122, 1998.

[3] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive Proofs and the Hard-
ness of Approximating Cliques. J. ACM 43(2): 268–292, 1996.

[4] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

12-6

