Notes on Complexity Theory Last updated: February, 2008
Handout 13

Jonathan Katz

1 NP CPCP(poly,O(1))

We show here a probabilistically checkable proof for AP in which the verifier reads only a constant
number of bits from the proof (and uses only a polynomial amount of randomness). The proof of
this result will show how it is possible to (probabilistically) verify an “NP witness” by reading
only a constant number of bits of the witness. In addition, this result is used as a key step of the
proof of the PCP theorem itself.

To show the desired result, we will work with the NP-complete language of satisfiable quadratic
equations. Instances of this problem consist of a system of m quadratic equations

m

n
k
3 iy = 8
L=l k=1
(over the field Fy) in the n variables z1,...,z,. (Note that we can assume no linear terms since

x; = x; - x; in Fo and the summations above include the case i = j.) A system of the above form
is said to be satisfiable if there is an assignment to the {z;} for which every equation is satisfied.

It is obvious that this problem is in NP. To show that it is NP-complete we reduce an instance
of 3SAT to an instance of the above. Given a 3SAT formula ¢ on n variables, using arithmetization
we can express each of its clauses as a cubic equation. (In more detail: arithmetize the literal
x; by the term 1 — x; and the literal z; by the term z;; a clause ¢1 V fy V {3 is arithmetized
by the product of the arithmetization of its literals. Then ask whether there is an assignment
under which the arithmetization of each of the clauses of ¢ is equal to 0.) To reduce the degree to
quadratic, we introduce the “dummy” variables {z;;}};_; and then: (1) replace monomials of the
form z;x;x), with a monomial of the form z; jzy, and (2) introduce the n? new equations of the
form x; ; — x;x; = 0.

We remark that there is no hope of reducing the degree further (unless NP = P) since a system
of linear equations can be solved using standard linear-algebraic techniques.

2 The PCP for Satisfiable Quadratic Equations: An Overview

For the remainder of these notes, we will assume a system of m equations as in Eq. (1), in the n
variables {z;}. We will let (aq,...,a,) denote a boolean assignment to these variables. For a given
system of satisfiable quadratic equations, the entries of the proof string m will be indexed by a
binary vector 7 of length n? (and so || = 2"*), with the intention that an honest prover will choose
(a1,...,a,) to be a satisfying assignment and then set entry o' = (vi1,..., V10, Un1s---,Unn)
of m equal to:

_ def -
(V) = Z a;a;v; j -

1,7=1

13-1

(A dishonest prover can do whatever he likes and, of course, in this case the system of equations
may not be satisfiable.) Note that with (aq,...,a,) fixed, the above is a linear function of 7; i.e.,
it just computes the dot product of the input with the fixed string (a1,1,...,ann).

Roughly speaking, given access to a proof string 7 (which we may also view as a function
7:{0,1}"" — {0,1}) we will have the verifier check three things: (1) that the proof string encodes
a linear function; i.e.,

n
7T(17) = Z)\7;7]' Vi 4
ij=1

for some {\;;}; (2) that the coefficients of the linear function encoded by the proof string are
consistent; namely, that A; j = A;; - Aj; for all 4, j; and (3) that the assignment defined by setting
a; = \i; is indeed a satisfying assignment. (Note that these are all the case for a “good” proof
7w when the system of equations is satisfiable.) Because the verifier is restricted to making a very
small number of queries, the verifier will be unable to verify any of the above with certainty, but it
will be able to verify these conditions probabilistically. In these notes, we focus only on achieving
a constant probability of rejection when the system of equations is unsatisfiable; we aim for the
simplest proof and make no attempt to optimize the constants. Of course, by using a constant
number of independent repetitions we can then reduce the error probability to 1/2 (while still
reading only a constant number of bits from 7).

We discuss in turn the tests used to determine each of the above, and then show how they can
be combined to yield the desired PCP system.

3 The Linearity Test

A function f: {0,1}" — {0,1} is linear if there exists an r € {0,1}" such that f(z) = (z,7), i.e.,

N

flaran) = i@

i=1

In this section we show how to test whether a function 7 : {0, 1}" — {0,1} is (close to) linear.

Let us first define a notion of distance for functions. Two functions f, g : {0,1}¥ — {0,1} have
distance ¢ if they disagree on a § fraction of their points; that is, if Pr,[f(z) # g(x)] = 6 (where z
is chosen uniformly from {0,1}"). Viewing a boolean function over {0,1}" as a binary string of
length 2V, two functions have distance ¢ if their Hamming distance is 6 - 2. We say a function
f is distance at least 6 from linear if for all linear functions g the distance between f and g is at
least . (And define “distance ¢” and “distance at most §” similarly.)

The following test allows a verifier, given access to m, to check whether 7 is “close” to linear:

e Choose random v(1) v® € {0,1}V.
e Query w(v(M), 7(v®?), and w(v™ + ().
e Accept if and only if 7(v()) + 7(v®) = (oM + v3).

Note that if 7 is linear, then the verifier always accepts since
N
(oD +0@) = Zri : (vz-(l) + vZ@))
i=1

13-2

N N
= <Z T vgl)) + (Z T vi@))
i=1 i=1

The interesting part is to show that when 7 is “far” from linear then the verifier rejects with high
probability. In the following sections we prove:

Theorem 1 If w has distance € from linear, the linearity test rejects with probability at least €.

Of course, by repeating the test a constant number of times we can increase the rejection probability
to any constant less than 1.

The following sections give two proofs of Theorem 1: the first is messy but totally self-contained;
the second is beautiful but relies on Fourier analysis. (The necessary Fourier analysis is also
explained, but it relies on some basic linear algebra.) Actually, the first proof yields a slightly
weaker result (but the overall analysis of the PCP construction could easily be adapted to work
with it). Neither of the proofs are necessary for understanding the PCP construction, and so the
reader willing to take Theorem 1 on faith can skip directly to Section 4.

3.1 First Proof

Let m be distance ¢ from linear. Note that we must have ¢ < 1/2. (Prove it!!) We prove the
following weaker version of Theorem 1:

Theorem 2 If w has distance € from linear, the linearity test rejects with probability at least e /4.

We divide the analysis into two cases:

Case 1: Say € < 3/8. Let f be a linear function at distance e from 7. Let G be the set of points
on which f and 7 agree; we know that |G| = (1—¢)-2V. Now, if exactly two of the points v(1), v(?),
and v + 9@ lie in G, then the above procedure will reject. So we can lower-bound the probability
of rejection in this case by the probability that this occurs; i.e.,

Prlreject] > Prfexactly two of the points lie in G]
= 3.pPrpM ¢ G/\v(2),v(1) +0? e @] (by symmetry)
= 3-ProM ¢ G- Pr[v® oM + 0@ e G| oM ¢ G].
Now,
Prv® oM + 0@ e G| vV ¢ G
= 1-Prp® ¢ G\/vW +0® ¢ G0 ¢ @]

> 1-Prp® ¢ G| o ¢ G —Prp™ + 0@ ¢ ¢ | v ¢ G
= 1-—2¢,

'For any function 7, the expected number of points on which a random linear function agrees with 7 is at least
N
= 2*1. So there must exist a linear function that agrees with 7 on at least this many points (and the number of

points of agreement must be an integer).

13-3

applying a union bound for the inequality and using the fact that v is chosen independently of
v in the last step. Putting everything together we obtain

Prlreject] > 3-¢- (1 — 2¢),
which is at least 3e/4 for £ < 3/8 (as we are assuming here).

Case 2: Say 3/8 < e < 1/2. We are interested in

i Prlreject] = Pr [n(v™W) + 7 (v®) # 7(v® 4 0v@)].

BICORWE)

We show that if 7 is “small” then in fact there exists a linear function L, within distance less than
3/8 of . It follows that if € > 3/8 then 7 must be “large.”

Define L, as follows: for a string v € {0,1}", define L. (v) to be the boolean value b for which
1
Pr[m(v+ o) = w(oV) = 8] > 3,

where ties are broken arbitrarily. (We remark that since we are working over [y subtraction is the
same as addition.)
We begin with a technical claim.

Claim 3 For all v we have Pr o) [r(v +vM)) — w(vM)) = Ly (v)] > 1 - 27.

Proof Fix v, and consider the probability, over random choice of v, v, that (v + v(l)) —
7(vM) = 7(v +v@) — 7(v?). Letting p def Pr, o [m(v + o) — 7(vM) = L, (v)] we have

(v + o) = 7 (vD) = 7(v + @) = (@) = p? + (1 — p)?

BICORWE)

(since the differences are equal if they are either both equal to L. (v) or both not equal to L (v)).
Evaluating this another way, we obtain:

Pr [r(v+vM) = 7(0®) =7+ v®) = 7 (v?)]

o) ()

= Pr [rw+ v +70®) =70 +0vD +0@) =700 +0@) + 7(0W) = 7w + 0P + vM)]

SCORE)

> Pr [r(w+ o) +70®) —x@w+o® +0@)=0 /\

v (2)
(v + @) + 7)) — (v + 0@ +0M) = 0]
= 1— Pr [ro+ov)+70?®)—aw+o® +0@)=1 \/

o) @
7w+ 1@ + 7(0W) — (v + 0@ +oM) = 1]
1— Pr [+ o)+ 70@) £ 7w+ 0D + @)

o) 4@
— Pr_[r(+v®) +x@wW) £ 70+ 0@ 1)

(D) ()

= 1-27,

v

using in the last step the fact that v +v™) (resp., v +v?) is uniformly distributed when v(}) (resp,
v?)) is uniformly distributed. We conclude that p? 4+ (1 — p)?> > 1 — 27. Since p > % by definition
of Ly, and p > p? + (1 — p)? for p € [%, 1], we have p > 1 — 27 as desired. [|

13-4

Claim 4 L, is within distance 31 of .
Proof We are interested in Pry[m(v) = L;(v)]. We have
Prlr(v) = Lx(v)]

> Pr [r(v) =n(v+oW) —x(@D) /\ Lr(v) = (v +vW) — w(oM)]

B v,v(1)

1— Pr [r(v) # w(v+0W) = a(@D)\/ Lr(v) # w(v + V) — 7(0D)]

00D

Y

1— Pr [7(v) Z7@w+vD) =71 = Pr [L.(v) # (v +vP) — 7 (vM)]

’l),’l)(l) U,U(l)

> 1—7-27.

The claim follows. |

Finally, we show that if 7 is “small” then L, is linear. Combined with the previous claim, this
shows that if 7 is “small” then 7 is “close” to a linear function.

Claim 5 If 7 < 1/6 then L is linear.

Proof We show that for all a,b € {0,1}"¥ we have L.(a) + L(b) = L(a +b) (it is not too hard
to show that this implies L is linear). Fix a,b arbitrarily. Suppose there exist v(1), v(?) such that

1. Lp(a+0b) =7(a+b+ov® +0@) - x(u® + @),
2. Lp(b) =m(a+b+o® +v@) —7(a+ oM +0@);

3. La(a) = m(a + oM +0@) — x(u® +¢?).

) —
Then we would have Lr(a) + L(b) = Lz(a + b) as desired. We will show, using the probabilistic
method, that there exist v, v(® with the stated properties.

By Claim 3, each of the above events fails to occur with probability at most 27 < 1/3. Applying
a union bound, we see that the probability that at least one of the events does not occur is strictly
less than 1. Thus, the probability that all the above events occur is strictly greater than 0 and
hence L, is linear. [|

Putting everything together we see that if 7 is distance 3/8 (or more) from linear, then we
must have 7 > 1/8; if not, then L, is linear but 7 is within distance less than 3/8 from L, (a
contradiction).

3.2 Second Proof

The second proof uses Fourier analysis. We introduce only as much background as needed.
The first thing we will do is view 7 as a function from {—1,1}"V to {—1,1}, by mapping each
bit b of the input and output to the value (—1)°. Given this notational switch, the linearity test
1))

chooses random z,y € {—1,1}", and accepts if and only if 7(z) - 7(y) - 7(x o y) = 1, where “o” is
used to denote a coordinate-wise product.

13-5

View the set of functions from {—1,1}" to the reals as a vector space (over the reals), in
the natural way. This is a vector space of dimension 2%V, with one basis given by the functions

{Iv}veq—1,13v Where
def [1 V' =w
I,(v) = .
o) { 0 otherwise
To confirm that this is a basis, note that any function 7 can be expressed as:
T = Z m(v) - L.
ve{-1,1}N

We will also define an inner product (-,) on this vector space, via:
def 1
(£.9) = 55 - D_F(©) - 9(v) = Exp,[f(v) - g(v)]

We see that the basis given above is orthogonal.

The “standard” basis for the vector space of functions from {—1,1}" to the reals is the one just
given. In our context, however, there is another basis that works even better: the Fourier basis.
This basis is given by {Xu},c{_1,13~v Where

Xo(v') = H v
i:v;=1
(with the empty product interpreted as a ‘1’). Note that each x, is just a linear function (except
that everything has been translated from {0, 1} to {—1,1}). One can check that these functions are
all orthogonal (proving, since there are 2V such functions, that this is indeed a basis) and in fact

these functions give an orthonormal basis. For notational convenience (and following a standard

convention in this area), we define f(v) dof (f,xv). We then have

f = Z f(?}) *Xv -
ve{-1,1}N

The first hint that the Fourier basis might be useful for our purposes is the following. If f, g
are functions from {—1,1}" to {—1,1}, then

(F.9) =55 - (e 1 £0) = 9@} - |{o | 1) £ 9()}])

in other words, if f is distance ¢ from g, then (f,g) = 1 — 2§. This means that to find the linear
function closest to w, we simply need to find v for which (x,,) is mazimized. Furthermore, 7 is
far from linear if and only if (xy, ™) is small for all v. We will use this in the proof below.

Before turning to the proof of the linearity test, we state two claims that follow from basic
linear algebra.

e If {f;} is an orthonormal basis, then the inner product (f, g) of any two functions f, g is given
by the sum of the product of the coefficients of f and ¢ in that basis. Specializing for the
case of the orthonormal basis {x,} we obtain

(o)=Y f)-a).

ve{-1,1}N

This is known as Plancherel’s theorem.

13-6

o It follows from the above that (f, f) = >, f(v)?. If the range of f is {—1,1}, then (by
definition of the inner product)

(1) = 5w S TP =1

We thus conclude that when f maps onto {—1,1}, we have), f (v)? = 1. This is known as
Parseval’s theorem.

We now know enough to prove the following result:
Theorem 6 If w has distance € from linear, the linearity test rejects with probability at least €.

We begin with a lemma. Amazingly, the lemma is pretty powerful although its proof involves
nothing more than grinding through some algebraic manipulations.

Lemma 7 Prllinearity test accepts] = 3 + 1 - 3=, #(v)3.

Proof In our notation, the linearity test chooses random =,y € {—1,1}", and accepts iff 7(z) -
7(y)-m(xoy) = 1. Since 7 is boolean (so has range {—1,1}), we have 7(z) - 7(y) - 7(x o y) € {—1,1}.
So, I ey 2+ in(z) - w(y) - w(z 0 y) is an indicator random variable for the event that the linearity

test accepts. Thus:

Prlinearity test accepts] = Exp, [/]

Expanding 7 in terms of its Fourier coefficients gives

Exp, ,[n(z) - w(y) - w(x o y)] =

Exp,, (Z #(v) xv(w)) : <Z (V') Xt (y)) : <Z (") xor (0 y))]

v UI ,UH

= Exp,, | Y #(0)#()7(0") xo(®) xo(y) xor (@ o)

v

= Y #) A F") - Expyy, [o(@) xo (4) xor (z 0)] - 3)

/ 1/
v,v" v

By definition of y,, for any fixed v, v’,v” we have:

Exp,, [Xo(@) xo @) xor(@oy)] = Exp,, | [= [] »- [=i
[0 vi= iivf= ivf=
= Expx,y H T - H Yi
|2 vi A i:viFvy

= Exp, H z;| - Exp, H vil , (4)

i vy vl

13-7

where the second equality uses the fact that 2? = y? = 1 (since x;,y; € {—1,1}), and the third
equality relies on the fact that x and y are independent. Evaluating Exp, [Hi:vi Lol xl] is easy:

if v = v” then the product is empty and thus evaluates to 1 regardless of x. On the other hand,
if v # v” then each z; is equally likely to be 1 or —1 and so the expected value of the product
is 0. We thus see from Equation (4) that Exp, , [xo(%) xv (¥) Xor (z 0 y)] = 0 unless v = v' = 2",
in which case the expression evaluates to 1. Working back through Equations (3) and (2) gives the
claimed result. |

Given Lemma 7 we can prove Theorem 6 in just a few lines. We have:

+ % . Zfr(v)?’
4 % max{#(0)} - 3 #(0)?

4 %mgx{fr(v)},

Pr[linearity test accepts] =

NI~ NI~ N~

using Parseval’s theorem. If 7 is distance e from linear, this means that max,{7(v)} =1 —2c. We
conclude that Pr[linearity test accepts] < 1 — ¢, proving the theorem.

4 The Consistency Test

We return to our notation from Section 2, where ¥ represents a vector of length n? and we index
it using two indices each ranging from 1 to n.

Assume 7 is within distance 1/48 from linear. This means there exists a unique? linear function f
within distance 1/48 from 7; we can write f as

F@) =Y Aij-vi
ij=1

for some {); ;}. We now want a way to check that these {); ;} are consistent; i.e., that A; j; = Xi;-Aj
for all 4,j. A useful way to view this is to put the {\; ;} in an n x n matrix M; i.e.,

A1 A2 0 A
MEL
)\n,l >\n,2 T)\n,n
Let X & (A1, -5 Anp) (all our vectors will be row vectors). Then consistency is equivalent to:
XX =M

(note once again that)\222 = \;,; since we are working in Fy). We first show an efficient way to test
equality of matrices, and then show how the test can be implemented using access to .

2That f is unique follows from the fact that any two distinct linear functions are distance 1/2 from each other.

13-8

Claim 8 Let M, M’ be two unequal n x n matrices over Fo. Then

3
Pr [FMyT =iM'gT) < =
f,ge{o,l}"[Y 7= 4
Proof Note that ZM¢T — &M'yT = Z(M — M")j™ and M — M’ is a non-zero matrix. So we are
interested in the probability that ZM"§7T = 0 for non-zero matrix M”.
The probability that M”#T = 0 is at most 1/2. Assuming this does not occur, the probability
that Z(M"§7) = 0 is exactly 1/2. So, the probability that #M"§7 = 0 is at most 3/4. [|

How can we evaluate ZM¢ 7 and Z(ATX)yT given access to m? Let us assume we have access
to f, and show how to correct for this later. Given access to f, it is easy to compute M since

n
fM:le = Z)\i,jxiyj .
ij=1
Setting v; ; = x;y; and querying f(%) thus gives the desired answer. For the second computation,
note that
FATNFT = @Y.
Setting v;; = «; (and v; ; = 0 when ¢ # j), we see that f(¢) = ZXT; the value XﬁT is computed
similarly.

The above assumes we have access to f — but we only have access to 7! However, we said that 7
was within distance 1/48 from f. So we can compute f () (for any #) by choosing a random “shift”
7€ {0,1}"" and computing f (%) = 7(7) + 7 (7 + ¥). (Here, the notation f has nothing to do with
the Fourier notation used in Section 3.2.) Note that as long as 7(7) = f(7) and 7 (F+7) = f(F+7),
then f(7) = f(¥). Thus, for any ¥ we compute the correct value of f(%) except with probability
2/48 = 1/24. This technique is called self-correction.

4.1 In Summary

To summarize, we perform the following consistency test:

1. Choose random Z, 3.
2. Using self-correction and the approach described above, compute ZM 7.
3. Using self-correction and the approach described above, compute a‘:’(x TX)Q’ T

4. Accept if and only if the two values thus computed are equal.

Note that step 2 requires one call to f, so it requires two calls to 7. Step 3 requires two calls to f,
so it requires four calls to 7.
We may now state the main result of this section (again, we have not tried to optimize constants):

Theorem 9 Assume m is within distance 1/48 of a linear function f. If f is not consistent (in
the sense described above), then the consistency test rejects with probability at least 1/8.

Proof Assuming the test correctly computes ZM 77 and :E'(X TX)@YT, the test will accept with
probability at most 3/4 (by Claim 8). The probability that one of the six calls to 7 results in an
incorrect value for f is at most 6/48 = 1/8 (using the fact that m and f disagree on at most a 1/48
fraction of their points, and applying a union bound). So, the probability of acceptance is at most
3/4 + 1/8 and the theorem follows. [|

13-9

5 The Satisfiability Test

Assume 7 is within distance 1/48 from the linear function

F@) =Y Aijoig

i,j=1

and furthermore that f is consistent (i.e., the {); ;} satisfy X; ; = Ai; - Aj ; for all ¢, 7). We view 7
an encoding an assignment @ = (A11,A22,...,Ann). We now want to check that this assignment
is a satisfying assignment for the given system of equations. (Indeed, note that until this point
everything we have done has been independent of the system of equations whose satisfiability we
are interested in!)

Our set of equations (cf. Eq (1)) can be written as:

n
®) Z CE? sz =0 ,
ij=1

and so we want to verify whether

n
Yk L k) 4 Z cg? caja; =0
ij=1

for all k € [1,m]. If we let ¥ & (Y1,--.,Ym), then we want to check whether ¢ is the 0-vector. We
can’t check every position individually since this will require too many queries to 7. What we will
do instead is to look at the dot product of § with a random vector: if ¥ = 0 then this dot product
will always be 0, but if i # 0 then the dot product will be 1 with probability 1/2.

Taking the dot product of § with a random vector is equivalent to choosing a random subset
S C [m] and looking at the sum

Zyk = Z ®) En: CE? xeotey

keS keS i,j=1
n
_ (k) ZZ) oo
= Zc + Cij i
keS keSi,j=1
n
_ (k) - (k)
= D> > a Cij |-
kesS i,5=1 kesS

We can evaluate the first term on our own, and will obtain the second term by evaluating f(%)
where ®
Vij = Z Cij -
keS

To obtain this value f(7), we will again use self-correction as in the previous section.
In total, we make two queries to m and achieve the following (again, constants have not been
optimized):

13-10

Theorem 10 Assume m is within distance 1/48 of a linear function f and that f is consistent (as
defined previously). Then if the system of equations is not satisfiable, the satisfiability test rejects
with probability at least 1/8.

Proof If the test correctly computes f(%), it accepts with probability 1/2. The probability that
one of the two calls to 7 results in an incorrect value for f is at most 2/48 (as in the previous
theorem). So, the probability of acceptance is at most 1/2 + 2/48 and the theorem follows. [|

6 Putting it all Together

We summarize the PCP system. Given a system of equations and access to an oracle m, the verifier
proceeds as follows:

e Perform the linearity test (3 queries to).
e Perform the consistency test (6 queries to).
e Perform the satisfiability test (2 queries to 7).
e Accept only if all the above tests succeed.

If the system of equations is satisfiable, then there exists a proof string « for which the above
test accept with probability 1. We claim also that if the system of equations is not satisfiable,
then the test will reject with probability at least 1/48 (for any 7). This is because there are three
cases: (1) 7 is not within distance 1/48 of a linear function; (2) 7 is within distance 1/48 of a
(unique) linear function f, but f is not consistent; or (3) 7 is within distance 1/48 of a consistent
linear function f, but f does not encode a satisfying assignment (it can’t since the system is not
satisfiable...). In case (1) the linearity test will reject with probability at least 1/48; in case (2)
the consistency test will reject with probability at least 1/8; and in case (3) the satisfiability test
will reject with probability at least 1/8.

7 A PCP of Proximity

We now show that the PCP given previously can be easily adapted to give something stronger: a
PCP of prozimity (PCPP). Considering PCPPs (rather than PCPs) will be useful when we later
use the scheme constructed here as a subroutine in building a PCP with better parameters.
Informally, in a PCPP the verifier is given oracle access not only to a proof, but also to a
witness d. (The verifier is charged for its queries to @ as well.) Now, the verifier should reject
whenever @ is not “close” to a satisfying assignment for the system of quadratic equations. Of
course, if no such satisfying assignment exists then it is impossible for any @ to be close to a

satisfying assignment.

A bit more formally, for two strings =,y € {0,1}" define their relative distance to be A(z,y) def

{i: x; # yi}|/n. We say x,y are d-close if A(z,y) <0, and z,y are d-far otherwise. We say that =
is d-close to a set S C {0, 1}™ if there exists a y € S such that x is d-close to y, and x is J-far from
S otherwise. If S is the empty set, then every x is 1-far from S.

Let ¢ be a constant. We now define a PCPP with distance parameter ¢ for the N'P-complete
language of satisfiable quadratic equations: The verifier is given a system of equations as always. It

13-11

is also given oracle access to two strings: a “witness string” @ and a “proof string” w. (The verifier
will be charged for its queries to both strings.) We require:

e If @ is a satisfying assignment for the given system of quadratic equations, then there exists
a m such that the verifier accepts with probability 1.

e Let L be the set of assignments that satisfy the given system. If @ is d-far from L, then for
every 7 the verifier rejects with constant probability.

No requirements are imposed in case d@ is not a satisfying assignment itself, but is close to some
satisfying assignment.

Assume 7 is within distance 1/48 from a consistent, linear function f. We can add the following
test (let’s call it the “distance test”) to the PCP already constructed to turn it into a proof of
proximity: Choose random i € {1,...,n} and let ¢; € {0,1}"" be the vector that is 0 everywhere
except at position (i,7). Compute f(e;), using self-correction as before. Then compare this value
to the ith bit of the witness @, and reject if they are not equal. It is clear that if @ is a satisfying
assignment then there exists a proof m maintaining perfect completeness. On the other hand, if @ is
o-far from a satisfying assignment then there are two possibilities: if f does not encode a satisfying
assignment, then the satisfiability test will reject with high probability. But if f does encode a
satisfying assignment, the distance test will reject with probability at least § — 2/48.

Bibliographic Notes
These notes are adapted from [1, Lecture 18]. Section 3.2 was based on lectures 2 and 3 of
O’Donnell’s course [3]. Section 7 was adapted from Harsha’s thesis [2].

References

[1] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

[2] P. Harsha. Robust PCPs of Proximity and Shorter PCPs. PhD thesis, MIT, 2004. Available at
http://ttic.uchicago.edu/ prahladh/papers/thesis/

[3] R. O’Donnell. Lecture notes for 15-859S: Analysis of Boolean Functions. Available at
http://www.cs.cmu.edu/ odonnell/boolean-analysis.

13-12

