
Notes on Complexity Theory: Fall 2005 Last updated: September, 2005

Lecture 2

Jonathan Katz

1 More NP-Compete Languages

It will be nice to find more “natural” NP-complete languages. To that end, we define the
language circuit-satisfiability (CS) as follows:

CS = {C | C is a circuit, and ∃σ s.t. C(σ) = 1}.

Theorem 1 CS is NP-complete.

Proof It is relatively easy to see that CS ∈ NP. We show that CS is NP-complete
by giving a Karp reduction from any L ∈ NP to CS. Fix such an L, and let ML be a
non-deterministic machine deciding L and running in time nc on inputs of size n. The
idea is straightforward: let ML(x,w) denote an execution of ML with input x and making
non-deterministic choices w. Note that x ∈ L iff there exists a w such that ML(x,w) =
1. (We further assume that w is padded, as necessary, so that there exists such a w

with length exactly nc in this case.) Consider the deterministic, polynomial-time function

ML,x : {0, 1}nc

→ {0, 1} defined as ML,x(w)
def
= ML(x,w). Our Karp reduction will take

as input x and output a circuit CML,x that computes the function ML,x. Clearly, x ∈ L iff
CM,L,x ∈ CS. So if we can construct such a circuit in polynomial time we are done. We
will show that a circuit with the desired properties exists which is of size polynomial in the
input x. We will then argue that in fact the circuit can be constructed in polynomial time,
given x (and with implicit knowledge of ML).

Let t = |x|c. We will build a circuit having O(t) levels and O(t) wires/gates at each
level. The single wire at level t+1 will be the output wire. The wires at level 0 represent the
initial configuration of ML,x, and the wires at level i ∈ {1, . . . t} represent the configuration
of ML,x after the ith step of its execution. A configuration of ML,x consists of t “blocks”,
with the jth block storing the following information: (1) the contents of the j th cell of
ML,x’s work tape, (2) a bit indicating the presence/absence of the head on the j th cell of
ML,x’s work tape; (3) the value of ML,x’s state, if the previous bit is on (we do not care how
these wires are set if the previous bit is off). Note that only a constant number of wires,
per block, are needed; thus, there are O(t) wires per level as claimed. At level i, label the
first set of wires (above) as ~si = si,1, . . . , si,t, the second set of wires ~hi = hi,1, . . . , hi,t, and
the last set of wires ~qi = qi,1, . . . , qi,t (note that each si,j and qi,j is actually some constant
number of wires). Call (si,j, hi,j , qi,j) the configuration at (i, j).

The input to the circuit is a t-bit string w = w1, . . . , wt. Hard-wire at level 0 the
values ~s0 = x (padded out appropriately with spaces), h0,1 = 1, h0,j = 0 (for j > 1), and
q0,1 = qinitial. The key point is that the configuration at (i, j) is determined entirely by wi

(i.e., the ith input wire) and the configuration at (i − 1, j − 1), (i − 1, j), and (i − 1, j + 1).

2-1



Note that such a statement will not be true for a general poly-time function, but it is true
for the function ML,x because of the way it is defined (namely, wi represents the choice
made by ML,x at its ith step). Thus, the value of each wire at level i is determined by
the values of a constant number of wires (a constant number from level i − 1 plus a single
input wire), and it is not hard to see that any function on a constant number of bits can
be computed by a constant-size circuit.

At the bottom level (level t + 1), we compute the output as follows: the output of the
circuit is 1 iff there exists an index j such that ht,j = 1 and qt,j = qaccept. Computing this
requires t − 1 ORs of t constant-size circuits (namely, one for each j ∈ [t]).

Since there are O(t) wires/gates at each level, and O(t) levels, the circuit has size O(t2)
which is polynomial in |x|. It is not too difficult to see that the circuit can also be constructed
(uniformly) in time linear in its size (in particular, the O(t) constant-size circuits at each
level are the same at each level, and are based on the transition function of ML,x).

Using the above result, we show that satisfiability is NP-complete.

Theorem 2 SAT is NP-complete.

Proof It is easy to see that SAT ∈ NP. We show a Karp reduction from CS to SAT .
Since Karp reductions are transitive, the theorem follows.

Given a circuit C, we associate a variable with each wire. Let the variables be numbered
v1, . . . , vn. For each gate g of the circuit, we define a clause φg as follows:

– If g is a NOT gate whose input wire is associated with the variable vi and whose

output wire is associated with vj, then let φg
def
= (vi ∧ v̄j) ∨ (v̄i ∧ vj).

– If g is an OR gate whose input wires are associated with the variables vi, vj and whose
output wire is associated with vk, then let

φg
def
= (vk ∧ (vi ∨ vj))

∨
(v̄k ∧ v̄i ∧ v̄j).

– If g is an AND gate whose input wires are associated with the variables vi, vj and
whose output wire is associated with vk, then let

φg
def
= (vk ∧ vi ∧ vj)

∨
(v̄k ∧ (v̄i ∨ v̄j)).

– If the output wire is associated with variable vi, define φout
def
= vi.

Finally, define Φ = φout ∧
∧

g∈C φi. Say the input wires of C are associated with

v1, . . . , v`. It can be verified that C evaluates to 1 on an input x ∈ {0, 1}` iff there is a
satisfying assignment of Φ in which vi = xi for 1 ≤ i ≤ `. The theorem follows.

2 Relating Search Problems to Decision Problems

For this section, let R denote a relation which is polynomially bounded (namely, there exists
a polynomial p such that if (x,w) ∈ R then |w| ≤ p(|x|)) as well as polynomially-verifiable

(i.e., R ∈ P). Note that any such R defines the NP-language LR given by:

LR
def
= {x | ∃w : (x,w) ∈ R}

2-2



(this is the “dual” of the conversion from an NP-language L to a relation RL described
earlier, although we remark that there are multiple relations R which define the same
language LR). The decisional problem over R is to determine, given x, whether x ∈ LR;
i.e., to determine whether there exists a w such that (x,w) ∈ R. The search problem over
R is to find a w for which (x,w) ∈ R, assuming such a w exists.

Search problems are “harder” than decisional problems in the sense that if the search
problem can be solved efficiently then so can the decisional one. What can we say about
the other direction? We begin with a (somewhat informal) definition:

Definition 1 Let OP denote an oracle that solves some problem P . We say a problem P1

is Cook-reducible to a problem P2 if there exists a polynomial-time oracle machine M such
that MOP2 solves P1. ♦

(The above notion is sometimes also referred to as Turing reducibility.) It is not hard to
see that, using the above terminology, the decisional problem over a relation R is always
Cook-reducible to the search problem over R (assuming R satisfies the criteria given above).

Definition 2 We say a relation R is self-reducible if the search problem over R is Cook-
reducible to the decisional problem over R. ♦

We remark that self-reducibility is technically defined for relations, not languages (since
a given language may give rise to multiple relations and thus multiple associated search
problems), but we will be informal and always mean the “natural” relation associated with
a language. We showed in class that SAT is self-reducible. (In fact, one can similarly
show that all NP-complete languages are self-reducible.) More difficult to see is that
graph isomorphism — which is not believed to be NP-complete — is self-reducible via
the following algorithm which, given two isomorphic n-vertex graphs G1, G2, determines an
isomorphism φ between them vertex-by-vertex (here, if (i, j) ∈ φ we take it to mean that
φ(i) = j):

Let vi (resp., ui) denote the ith vertex of G1 (resp., G2)
Initialize G′

1 = G1, G′
2 = G2, φ = ∅, and J = [n]

For i = 1 to n do:
For j ∈ J do:

Let G′′
1 be the graph derived from G′

1 by rooting a tree with i · n vertices at vi

Define G′′
2 analogously using uj

If there is an isomorphism between G′′
1 and G′′

2 do:
add (i, j) to φ

set G′
1 = G′′

1 and G′
2 = G′′

2

set J = J \ {j}
loop to the next value of i

Output φ

It is believed that not all languages in NP are self-reducible. One conjectured example
is the natural relation derived from factoring: although composite numbers can (now) be
recognized in polynomial time, factoring composite numbers in polynomial time is not
believed possible.

2-3



3 Ladner’s Theorem

We know that there exist NP-complete languages. Furthermore, it is not hard to see that as
long as P 6= NP, any NP-complete language lies in NP \ P. Are there non-NP-complete
languages in NP \ P ? Ladner’s theorem tells us that there are.

Theorem 3 Assuming P 6= NP, there exists a language A ∈ NP \ P which is not NP-

complete.

Proof The high-level intuition behind the proof is that we construct A by taking an
NP-complete language and “blowing holes” in it in such a way that the language is no
longer NP-complete yet not in P either. The specific details are quite involved.

Let M1, . . . denote an enumeration of all polynomial-time Turing machines; formally,
this can be achieved by considering an enumeration1 of M ×

�
(where M is the set of

all Turing machines), and defining Mi as follows: if the ith item in this enumeration is
(M, j), then Mi(x) runs M(x) for at most |x|j steps. We remark that M1, . . . also gives
an enumeration of languages in P (with languages appearing multiple times). In a similar
way, let F1, . . . denote an enumeration of functions computable in polynomial time (such
functions are defined by the poly-time Turing machine which computes them).

Define language A as follows:

A = {x | x ∈ SAT ∧ f(|x|) is even},

for some function f that remains to be defined. Note that as long as we ensure that f is
computable in polynomial time, then A ∈ NP . We define f by a polynomial-time Turing
machine Mf such that Mf (1n) = f(n). Let MSAT be a machine that decides SAT (not
necessarily in polynomial time, of course. . . ), and let f(0) = f(1) = 2. On input 1n (with
n > 1), Mf proceeds in two stages, each lasting for n steps:

1. During the first stage, Mf computes f(0), f(1), . . . until it runs out of time.2 Suppose
the last value of f it was able to compute was f(x) = k. The output of Mf will be
either k or k + 1, to be determined by the next stage.

2a. If k = 2i is even, then Mf tries to find a z ∈ {0, 1}∗ such that Mi(z) outputs the
“wrong” answer as to whether z ∈ A. (That is, Mf tries to find a z such that either
z ∈ A but Mi(z) = 0, or such that z 6∈ A but Mi(z) = 1.) This is done by computing
Mi(z),MSAT(z), and f(|z|) for all strings z in lexicographic order.

If such a string is found within the allotted time, then the output of Mf is k + 1.
Otherwise, the output of Mf is k.

2b. If k = 2i−1 is odd, then Mf tries to find a string z such that Fi(z) is an incorrect Karp
reduction from SAT to A. (That is, Mf tries to find a z such that either z ∈ SAT but

1Since both M and � are countable, it follows that M× � is countable.
2Here and in the next stage, note that Mf never needs to compute f(n′) for n′ ≥ n (which would cause

self-reference problems). This is so since Mf (1n) runs out of time (in either stage) if it writes down a string
of length n.

2-4



Fi(z) 6∈ A, or z 6∈ SAT but Fi(z) ∈ A.) This is done by computing Fi(z), MSAT(z),
MSAT(Fi(z)), and f(|Fi(z)|).

If such a string is found within the allotted time, then the output of Mf is k + 1;
otherwise, the output is k.

It is clear from its definition that Mf runs in polynomial time. Note also that f(n+1) ≥ f(n)
for all n.

We claim that A 6∈ P. Suppose the contrary. Then A is decided by some Mi. In this
case, however, the second stage of Mf with k = 2i will never find a z satisfying the desired
property, and so f is eventually a constant function and in particular f(n) is odd for only
finitely-many n. But this implies that A and SAT coincide except for finitely-many strings.
This implies that SAT ∈ P, a contradiction to our assumption that P 6= NP.

Similarly, we claim that A is not NP-complete. For, if so, then there is a polynomial-
time function Fi which gives a Karp reduction from SAT to A. Now f(n) will be even for
only finitely-many n, implying that A is a finite language. But then A ∈ P, a contradiction
to our assumption that P 6= NP .

As an addendum to the theorem, we note that there are no “natural” languages known
to be in NP \ P but not NP-complete (assuming P 6= NP , of course). However, there are
a number of languages conjectured to fall in this category, including graph isomorphism and
essentially all languages derived from cryptographic assumptions (e.g., factoring, one-way
functions, etc.).

Bibliographic Notes

Sections 1 and 2 are based on [2, Lecture 2]. Ladner’s theorem was proven in [3], and the
proof given here is based on Papadimitriou [4, Chap. 14] and a note by Fortnow [1].

References

[1] L. Fortnow. Two Proofs of Ladner’s Theorem. Available from
http://weblog.fortnow.com/media/ladner.pdf.

[2] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

[3] R.E. Ladner. On the Structure of Polynomial-Time Reducibility. J. ACM 22(1): 155–
171, 1975.

[4] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1995.

2-5


