
Notes on Complexity Theory: Fall 2005 Last updated: December, 2005

Lecture 6

Jonathan Katz

1 Sparse Languages and P vs. NP

In this lecture, we will explore various consequences that follow if NP-complete languages are
reducible to sparse languages (with different results for Karp reductions and (Cook-)Turing reduc-
tions). First, let us define what it means for a language to be sparse.

Definition 1 A language L is sparse if there exists a polynomial p such that |L ∩ {0, 1}n| ≤ p(n).
In other words, L contains only polynomially-many strings of any given length. ♦

It is not hard to see that any sparse language is in P/poly (use a lookup table). In fact:

Theorem 1 An NP-complete language L is Turing-reducible to a sparse language iff NP ⊂
P/poly.

The proof is quite straightforward (one direction is trivial), and would make a good homework/exam
question. (Hint: Use the formulation of P/poly in terms of polynomial-length advice strings. . .)
We will see later the Karp-Lipton theorem which gives evidence that NP 6⊂ P/poly (in which case,
by the above, NP-complete languages are not Turing-reducible to sparse languages).

We can show a stronger result for the case of Karp reductions:

Theorem 2 (Mahaney’s theorem) An NP-complete language L is Karp-reducible to a sparse
language iff P = NP.

Proof One direction is easy: if P = NP then any L ∈ NP is trivially Karp-reducible to the
sparse language {1}. (Why?)

The other direction is more difficult. Note first that if some NP-complete language L is Karp-
reducible to a sparse language, then every language in NP is Karp-reducible to a sparse language.
Consider the NP-complete language LSAT defined as follows: (φ, x) ∈ LSAT if φ is a boolean for-
mula in n variables, x ∈ {0, 1}n, and there is a satisfying assignment for φ which is lexicographically
at most x. (Note that (φ, 1n) ∈ LSAT iff φ ∈ SAT , so LSAT is easily seen to be NP-complete.)
Let LSAT be Karp-reducible to the sparse set S via the poly-time computable function f .

We now show a polynomial-time algorithm for SAT which implies that P = NP . Given an
input φ with n variables, the algorithm will apply f to various instances (φ, x) of LSAT ; since f
is poly-time computable, this implies a polynomial upper bound p(n) on the length of the output

of f . Let q(n)
def
= |S ∩ {0, 1}≤p(n)| and note that q is polynomial by sparseness of f .

We will view our algorithm as running a breadth-first search on a tree in which a node labeled
v has children labeled v0 and v1; the root is labeled with the empty string. A node labeled v
is viewed as corresponding to φ with the first |v| variables set to v. When we say that φ has a
satisfying assignment lexicographically at most v for |v| < n, what we really mean is that φ has a
satisfying assignment lexicographically at most v1n−|v| (alternately, there is a satisfying assignment
of φ in which the values of the first |v| variables are lexicographically at most v). We also use
f(v) as shorthand for f((φ, v1n−|v|)) (so that if f(v) ∈ S then φ has a satisfying assignment
lexicographically at most v). The algorithm proceeds as follows:

6-1

Let LIVE0 := {ε}
for i = 1 to n − 1:

Let LIVEi consist of all children of LIVEi−1

if |LIVEi| > q(n), prune LIVEi (see below) until it contains at most q(n) nodes
Output 1 iff one of the children of LIVEn−1 gives a satisfying assignment

Pruning of a set of nodes V is done in the following way: First compute ZV = {f(v) | v ∈ V }.
Then use repeated application of the following rules:

1. If f(v1) = f(v2) and v2 is lexicographically greater than v1, then remove v2 from V .

2. If ZV contains more than q(n) distinct values, remove the lexicographically smallest member
of V .

Note that once we are done pruning V we are left with a set V of at most q(n) nodes.
That the algorithm runs in polynomial time is immediate, since there are n levels and at most

2q(n) nodes are ever considered at each level. Say a node labeled v (with |v| < n) is an ancestor
of a satisfying assignment w if v is a prefix of w. Correctness of the algorithm follows from the
observation that, assuming φ is satisfiable, at the end of iteration i the set LIVEi contains an
ancestor of the lexicographically smallest satisfying assignment of φ. We can prove this formally
by induction. Clearly it is true for LIVE0. For the inductive step, note that if it is true for LIVEi−1

then it is true for LIVEi before we do the pruning. Now, when we do the pruning we eliminate some
nodes, but we argue that the claim remains true for LIVEi even after pruning:

1. Say v1, v2 ∈ LIVEi with v2 lexicographically larger than v1 and f(v1) = f(v2). Then v2 will be
removed. This might be a problem if v2 is an ancestor of the smallest satisfying assignment.
But this cannot be the case since then f(v2) ∈ S ⇒ f(v1) ∈ S, and so φ has a satisfying
assignment lexicographically smaller than v1.

2. Let V = LIVEi. If ZV contains more than q(n) values then we know that for at least one
z ∈ Z we have z 6∈ S and so for at least one v ∈ V , φ does not have a satisfying assignment
lexicographically at most v. But then φ cannot have a satisfying assignment lexicographically
at most v0, where v0 is the lexicographically smallest element in V . So, we do not lose
anything by removing v0.

This completes the proof.

2 The Polynomial Hierarchy

The polynomial hierarchy (PH) provides a “natural” extension of the classes NP and coNP . There
are multiple definitions; we will start with the one that is most natural in terms of what we have
covered in class up to now. In what follows, we say that R is polynomial-time relation if membership
of (x, y1, . . . , yn) ∈ R can be decided in time polynomial in |x|. (We also implicitly assume that
R is polynomially bounded ; i.e., there exists a polynomial p such that (x, y1, . . . , yn) ∈ R implies
|y1| + · · · + |yn| ≤ p(|x|).) The fact that R is polynomially bounded just means that the language

{

(x, y1, . . . , yn) | (x, y1, . . . , yn) ∈ R
}

is in P.

6-2

Definition 2 We say L ∈ Σi if there exists a polynomial-time relation R such that:

x ∈ L ⇔ ∃y1∀y2 · · ·Qiyi s.t. (x, y1, . . . , yi) ∈ R,

where Qi = ∀ if i is even, and Qi = ∃ if i is odd. By convention, we let Σ0 = P. ♦

Definition 3 We say L ∈ Πi if there exists a polynomial-time relation R such that:

x ∈ L ⇔ ∀y1∃y2 · · ·Qiyi s.t. (x, y1, . . . , yi) ∈ R,

where Qi = ∃ if i is even, and Qi = ∀ if i is odd. By convention, we let Π0 = P. ♦

It is not hard to prove that:

Proposition 3 Σi ∪ Πi ⊆ Σi+1 ∩ Πi+1.

By definition, we have Σ1 = NP and Π1 = coNP . For an example of a language in Π2, consider
the following language motivated by the problem of circuit minimization. For a boolean circuit C,
define L(C) = {x | C(x) = 1}; i.e., L(C) is exactly the language decided by C. Now define:

Lnotmin = {C | C is not the smallest circuit deciding L(C)} .

We show that Lnotmin ∈ Π2. Let Rnotmin be the relation defined as follows:

Rnotmin =
{

(C1, C2, x) | C1(x) = C2(x) and |C1| > |C2|
}

.

Note that Rnotmin is a poly-time relation. Now,

Lnotmin =
{

C | ∃C ′∀x : (C,C ′, x) ∈ Rnotmin

}

.

(I would more naturally write this as:

Lnotmin =
{

C | ∃C ′ with |C ′| < |C| s.t. ∀x : C(x) = C ′(x)
}

,

but you can check that this is just a reformulation of the above.) Similarly, define

Lmin = {C | C is the smallest circuit deciding L(C)} .

To see that Lmin ∈ Σ2, note that:

Lmin =
{

C | ∀C ′ with |C ′| < |C| s.t. ∃x : C(x) 6= C ′(x)
}

.

The above is an example of the more general fact that Σi = coΠi for all i. (It is a good exercise to
prove this. . .)

With the above in place we can define the polynomial hierarchy.

Definition 4 PH = ∪i≥0Σi = ∪i≥0Πi. ♦

(That the two definitions are equivalent follows using Proposition 3.) We note the following result:

Proposition 4 PH ⊆ PSPACE.

Proof (Sketch) The proposition is easy to prove directly (given x, just enumerate through all
possible y1, . . . , yi. . .). Somewhat more illuminating is the proof using the PSPACE-complete lan-
guage QBF (we will prove in a later lecture that QBF is in fact PSPACE-complete). This language
is defined as follows:

QBF =

{

φ |
φ is a boolean formula on n inputs, and

∃x1∀x2 · · ·Qxn : φ(x1, . . . , xn) = 1

}

.

Note the difference between QBF and a language in Σi (or Πi): the former allows unbounded
(polynomial) alternation of quantifiers, while the latter allow only bounded alternation of quantifiers.

6-3

2.1 An Alternate Definition of PH

A second way to define PH is in terms of oracle machines.

Definition 5 Define Σi inductively as follows:

• Σ0
def
= P.

• Σ1
def
= NP .

• Σi+1
def
= NPΣi .

(Actually, the second condition is redundant; it is included for simplicity.) Also, Πi
def
= coΣi. ♦

We show that the definitions are equivalent. For this section only, let ΣT
i refer to the definition

in terms of oracle Turing machines, and let ΣQ
i refer to the definition in terms of quantifiers. We

first prove by induction that ΣQ
i ⊆ ΣT

i . Clearly, the assertion is true for i = 1 (since they are both

equal to NP). Now, assume the assertion is true for i and we will prove it for i + 1. Let L ∈ ΣQ
i+1.

Then there exists a poly-time relation R such that

x ∈ L ⇔ ∃y1∀y2 · · ·Qi+1yi+1 s.t. (x, y1, . . . , yi+1) ∈ R.

In other words, there exists a language L′ ∈ ΠQ
i such that

x ∈ L ⇔ ∃y1 s.t. (x, y1) ∈ L′.

By our inductive assumption, ΣQ
i ⊆ ΣT

i and hence ΠQ
i ⊆ ΠT

i . Thus L′ ∈ ΠT
i , and it then follows

easily that L ∈ NPΠT

i = NPΣT

i
def
= ΣT

i+1. (Why does the first equality hold?)

For the other direction, assume ΣT
i ⊆ ΣQ

i and we now prove that this holds for i + 1 as well.
Suppose L ∈ ΣT

i+1. This means there exists a NP machine M and a language L′ ∈ ΣT
i such that

L ∈ ML′

. In particular, then, x ∈ L iff ∃y, q1, a1, . . . , qn, an (here, y represents the non-deterministic
choices of M , while qj, aj represent the jth query of M to its oracle and the answers, respectively)
such that:

• M , on input x, non-deterministic choices y, and oracle answers a1, . . . , an, makes queries
q1, . . . , qn and accepts.

• For all j, we have aj = 1 iff qj ∈ L′.

Now, since L′ ∈ ΣQ
i (by our inductive assumption), we can re-formulate the last condition as:

• aj = 1 ⇔ ∃yj
1∀yj

2 · · ·Qiy
j
i s.t. (qj, y

j
1, . . . , y

j
i) ∈ RL′

• aj = 0 ⇔ ∀yj
1∃yj

2 · · ·Q
′
iy

j
i s.t. (qj, y

j
1, . . . , y

j
i) ∈ R̄L′

for some poly-time relation RL′ . Then the above leads to the following specification of L as a ΣQ
i+1

language: x ∈ L iff ∃
(

y, q1, a1, . . . , qn, an, {yj
1}j∈Y

)

∀
(

{yj
1}j∈N , {yj

2}j∈Y

)

· · · Qi+1

(

{yj
i }j∈N

)

:

• M , on input x, non-deterministic choices y, and oracle answers a1, . . . , an, makes queries
q1, . . . , qn and accepts,

• Let Y be the set of j’s such that aj = 1, and let N be the set of j’s such that aj = 0. Then:

– (qj , y
j
1, . . . , y

j
i) ∈ RL′ for all j ∈ Y ,

– (qj , y
j
1, . . . , y

j
i) ∈ R̄L′ for all j ∈ N .

6-4

2.2 “Collapsing” PH

A generalization of the question NP
?
= coNP is the question Σi

?
= Πi (for any i). Since it is believed

that PH has infinitely-many levels, the following theorem is taken as evidence that Σi 6= Πi for
any i (the proof is for the case of Σ1 = NP and Π1 = coNP but the argument extends easily for
any i):

Theorem 5 If NP = coNP then PH = NP. (More generally, if Σi = Πi then PH = Σi.)

Proof Since NP ⊆ PH by definition, we need only show that PH ⊆ NP under the assumption
of the theorem. We proceed by induction. Clearly, Σ1 = NP by definition. Now, assume Σi = NP

and we prove that Σi+1
def
= NPΣi = NPNP ⊆ NP . Let L ∈ NPNP . Then there exists an NP

machine M with oracle access to a language L′ ∈ NP such that ML′

accepts L. Let RL′ be the
poly-time relation for L′. By the assumption that NP = coNP , we have that L̄′ (with poly-time
relation RL̄′) is also in NP. Then x ∈ L iff there exist y, q1, a1, . . . , qn, an where:

• M , on input x, non-deterministic choices y, and oracle answers a1, . . . , an, makes queries
q1, . . . , qn and accepts;

• If ai = 1 then ∃yi such that (qi, yi) ∈ RL′ ;

• If ai = 0 then ∃yi such that (qi, yi) ∈ RL̄′ .

This leads easily to the following NP formulation of L: x ∈ L iff ∃y, q1, a1, y1, . . . , qn, an, yn such
that the above hold.

3 The Karp-Lipton Theorem

The following result is one of the main sources of our belief that NP 6⊆ P/poly.

Theorem 6 (Karp-Lipton) If NP ⊆ P/poly then Σ2 = Π2 (and hence PH = Σ2).

Proof We begin with a claim that can be proved easily given our earlier work on self-reducibility
of SAT : if SAT ∈ P/poly then there exists a polynomial-size circuit family {Cn} such that C|φ|(φ)
outputs a satisfying assignment for φ whenever φ is satisfiable. That is, if SAT can be decided
by poly-size circuits, then SAT can be solved by poly-size circuits. Let |Cn| ≤ p(n) for some
polynomial p.

We use this claim to prove that Π2 ⊆ Σ2 (from which the theorem follows). Let L ∈ Π2. By
definition, this means there exists a polynomial-time relation R such that1

x ∈ L ⇔ ∀y∃z : (x, y, z) ∈ R.

Define L′ = {(x, y) | ∃z : (x, y, z) ∈ R}. Note that L′ ∈ NP, and so there is a Karp reduction f
from L′ to SAT . We assume without loss of generality that |f(x, y)| = q(|x|) for some polynomial
q (note that if y is too long, then (x, y) 6∈ L′ and so f(x, y) can output some unsatisfiable formula
of the appropriate length); note also (using the same reasoning) that f(x, y) can be computed in

1By convention throughout this proof (indeed, as we have been doing throughout this entire lecture), we implicitly
assume that quantification is done over strings of length at most some (appropriate) fixed polynomial in |x|.

6-5

time polynomial in |x|. Letting RSAT denote the obvious relation for SAT , we may thus express
membership in L as follows:

x ∈ L ⇔ ∀y∃w : (f(x, y), w) ∈ RSAT . (1)

Define the relation R∗ via:

R∗ def
=

{

(x, y, C) | (f(x, y), C(f(x, y))) ∈ RSAT and |C| ≤ p(q(|x|))
}

,

and note that R∗ is a poly-time relation. Define L̂ via:

x ∈ L̂ ⇔ ∃C∀y : (x, y, C) ∈ R∗,

and note that L̂ ∈ Σ2. We claim that L = L̂. To see this, note that if x ∈ L then f(x, y) ∈ SAT
for all y. But then there does indeed exist a C (namely, C = Cq(|x|)) such that for all y it is the
case that C(f(x, y)) outputs a satisfying assignment for f(x, y) (and furthermore |C| ≤ p(q(|x|)).
It follows that x ∈ L̂. On the other hand, if x 6∈ L then there exists a y∗ such that f(x, y∗) 6∈ SAT .
But then for any choice of C we have (f(x, y∗), C(f(x, y∗))) 6∈ RSAT and so x 6∈ L̂.

Bibliographic Notes

Theorem 2 was proven by Mahaney [4], building on earlier work of Fortune [2]. The present proof
of Theorem 2 is adapted from [1, Chap. 4]. A proof of a weaker version of Theorem 2 is given in
[3, Lect. 8].

Section 2 is largely based on [3, Lect. 9]. The proof in Section 3 is adapted from the proof
given in lecture notes by Cai [1, Lect. 10] and attributed to Hopcroft there; thanks to Yehuda
Lindell for pointing out errors/omissions in an earlier version of the proof. (A more clever, but
more complicated, proof of the Karp-Lipton theorem is also given in [3, Lect. 9].)

References

[1] J.-Y. Cai. Scribe notes for CS 810: Introduction to Complexity Theory. Nov. 30, 2003.

[2] S. Fortune. A Note on Sparse Complete Sets. SIAM J. Computing 8(3): 431–433, 1979.

[3] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

[4] S. Mahaney. Sparse Complete Sets of NP : Solution of a Conjecture of Berman and Hartmanis.
JCSS 25(2): 130–143, 1982.

6-6

