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Lecture on Parity

Jonathan Katz

1 Parity is Not in AC
0

Recall that AC0 is the set of languages/problems decided by constant-depth circuits (with
unbounded fan-in) of polynomial size. (We allow circuits to have AND, OR, and NOT
gates, and do not count NOT gates when measuring the depth or size of the circuit.) In
this lecture we give the “polynomial proof” of the result that parity cannot be computed
in AC0. We will actually prove something stronger:

Theorem 1 For sufficiently large n, any depth-d circuit that computes parity on n-bit
inputs must have at least 1

50
· 20.5·n1/2d

gates.

Thus, for any fixed depth-bound d, any circuit family computing parity grows as 2nε
for

some ε > 0.

Proof Fix a circuit C of depth d that computes parity on inputs of length n. Let
x1, . . . , xn denote the inputs to the circuit. We will assume that C has only OR gates
and NOT gates; this assumption is without loss of generality since we may convert any
AND gate to a combination of OR and NOT gates using De Morgan’s laws (by setting
∧

i ai = ¬∨

i(¬ai)) without affecting the size or depth of the circuit.
Let F3 = {−1, 0, 1} be the field of size 3. Say a polynomial p ∈ F3[x1, . . . , xn] is proper

if p(x1, . . . , xn) ∈ {0, 1} whenever x1, . . . , xn ∈ {0, 1}. Note that any proper polynomial can
be viewed as a boolean function in the natural way.

The proof hinges on two lemmas: we first show that any circuit in AC0 can be approx-
imated fairly well by a (proper) low-degree polynomial, and then show that parity cannot
be approximated well by any low-degree polynomial.

Lemma 2 For every integer t > 0, there exists a (proper) polynomial of total degree (2t)d

that differs with C on at most size(C) · 2n−t inputs.

Proof We will associate a proper polynomial with each wire of the circuit, and then
bound the error introduced. Begin at the input wires and associate the monomial xi to
the input xi. Now consider the output wire of some gate g, all of whose input wires have
already been associated with polynomials. Then:

• If g is a NOT gate, and its input wire is associated with the polynomial p, then
associate its output wire with 1 − p. Note that this does not increase the degree of
the polynomial.

• If g is an OR gate with k input wires associated with the polynomials p1, . . . , pk, then
do the following:
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Choose sets S1, . . . , St ⊆ [k] (see below for how these sets are chosen), and

define qi =
(

∑

j∈Si
pj

)2

for i = 1, . . . , t. Then set p = 1 − ∏t
i=1

(1 − qi).

(Note that p is just the OR of the qi.) If the maximum (total) degree of the {pi} is b,
then the (total) degree of polynomial p is at most 2tb. Note further that if the {pi}
are all proper then so is p.

For a given wire with associated polynomial p, an error is an input x1, . . . , xn on which
the value of the wire and the value of p differ. We now bound the fraction of errors in the
polynomial p∗ associated with the output wire of the circuit. No errors are introduced at
input wires or at NOT gates. Looking at any OR gate with k input wires associated with
the polynomials p1, . . . , pk, we claim that there is some choice of subsets S1, . . . , St ⊆ [k]
that will not introduce too many errors. On any input where all the pi’s evaluate to 0, the
resulting polynomial p will also evaluate to 0. Consider any input where at least one of the
pi’s evaluates to 1, and let S1, . . . , St be random subsets of [k]. With probability at least
half over choice of subset Sj, polynomial qj will evaluate to 1. If any of the qj evaluate
to 1 then so does p. So the probability that p does not evaluate to 1 is at most 2−t. By an
averaging argument, this implies the existence of some collection of subsets which introduce
errors on at most a 2−t fraction of the inputs at this gate.

Taking a union bound, we conclude that p∗ is a polynomial of degree at most (2t)d

having at most size(C) · 2n−t errors with respect to C.

Setting t = n1/2d/2 we get a polynomial of degree at most
√

n that differs from C on at
most size(C) · 2n−t inputs.

Lemma 3 Let p ∈ F3[x1, . . . , xn] be a proper polynomial of degree at most
√

n. Then for
sufficiently large n the polynomial p differs from the parity function on at least 2n/50 inputs.

Proof Consider the “translated” parity function parity′ : {−1, 1}n → {−1, 1} defined as
parity′(x1, . . . , xn) =

∏

i xi. Since

parity′(x1, . . . , xn) = parity(x1 − 1, . . . , xn − 1) + 1 ,

we see that there exists a polynomial p′ of degree at most
√

n that agrees with parity′ on
the same number of inputs for which p agrees with parity.

Let S ⊆ {−1, 1}n be the set of inputs on which p′ and parity′ agree, and let F denote
the set of all functions from S to F3. Note that |F| = 3|S|. Now, for every function f ∈ F
we can associate a polynomial pf ∈ F3[x1, . . . , xn] that agrees with f for all ~x ∈ S: just set

pf (x1, . . . , xn) =
∑

~y∈S

f(~y) ·
n

∏

i=1

(−yixi − 1) .

Although pf , as constructed, has degree 1 in each input variable, the total degree of pf

may be as large as n. We claim that, in fact, we can associate with each f a polynomial p̂f

whose degree is at most n/2 +
√

n. To see this, fix f and pf and look at some monomial
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±∏

i∈T xi appearing in pf where |T | > n/2 +
√

n. For any ~x ∈ S ⊂ {−1, 1}n we have

±
∏

i∈T

xi = ±
n

∏

i=1

xi ·
∏

i6∈T

xi

= ±p′(~x) ·
∏

i6∈T

xi .

Since p′ has degree at most
√

n, we see that we can re-write pf to a polynomial p̂f that
agrees with pf on S and has degree at most n/2 +

√
n.

The number of monomials whose total degree is at most n/2+
√

n is
∑n/2+

√
n

i=0

(n
i

)

, which
is less than 49 · 2n/50 for large enough n. So the total number of polynomials whose degree
is at most n/2 +

√
n is upper bounded by 349·2n/50. Given that |F| = 3|S|, this means we

must have |S| ≤ 49 · 2n/50 as claimed.

To complete the proof, we just combine the two lemmas. The first lemma gives a poly-
nomial p of degree at most

√
n that differs from parity on at most size(C) ·2n−n1/2d/2 inputs.

The second lemma tells us that, for large enough n, we must have size(C)·2n−n1/2d/2 ≥ 2n/50.

We conclude that size(C) ≥ 1

50
· 20.5·n1/2d

, completing the proof.
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Sipser, by Yao, and by H̊astad. The article by Boppana and Sipser [1] contains a good
write-up of this result and other circuit lower bounds.
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