Notes on Complexity Theory Last updated: October, 2008

Lecture on Relativization

Jonathan Katz

1 Relativizing the P vs. NP Question

The main result of this lecture is to show the existence of oracles® A4, B such that P4 = NP4 while
PB £ NPB. A fancy way of expressing this is to say that the P vs. NP question has contradictory
relativizations. This shows that the P vs. NP question cannot be solved by any proof techniques
that “relativize” (since a “relativizing” proof of P = NP, say, would by definition hold relative
to any oracle). As such, when this result was first demonstrated [2] it was taken as an indication
of the difficulty of resolving the P vs. NP question using “standard techniques”. It is important
to note, however, that various non-relativizing proof techniques are known; as one example, the
proof that PSPACE C IP does not relativize (it is known that there exists an oracle A such that
PSPACE# # IP4). See [4, Lect. 26] and [1, 3, 5] for further discussion.

An oracle A for which P4 = NP4, Let A be a PSPACE-complete language. It is obvious that
PA C NP4 for any A, so it remains to show that NP4 C PA. We do this by showing that

NPA C PSPACE C PA.

The second inclusion is immediate (just use a Cook reduction from any language L € PSPACE to the
PSPACE-complete problem A), and so we have only to prove the first inclusion. This, too, is easy:
Let L € NP4 and let M be a poly-time non-deterministic machine such that L(M#) = L. Then
using a deterministic PSPACE machine M’ we simply try all possible non-deterministic choices for
M, and whenever M makes a query to A we have M’ answer the query by itself.

An oracle B for which PZ # NPB. This is a bit more interesting. We want to find an oracle
B such that NPZ\ PB is not empty. For any oracle B, define the language Lp as follows:

Ly a1 Bn{o, 1} #0}.

It is immediate that Ly € N'PP for any B. (On input 17, guess z € {0,1}" and submit it to the
oracle; output 1 iff the oracle returns 1.) As a “warm-up” to the desired result, we show:

Claim 1 For any deterministic, polynomial-time oracle machine M, there exists a language B
such that L # L(MP).

Proof Given M with polynomial running time p(-), we construct B as follows: let n be the
smallest integer such that 2" > p(n). Note that on input 1", machine M cannot query its oracle
on all strings of length n. We exploit this by defining B in the following way:

"We associate oracles with languages; i.e., if A is a language then we also let A denote the oracle that computes
the characteristic function of A.

on Relativization-1

Run M (1™) and answer “0” to all queries of M. Let b be the output of M, and let
@ = {qi,...} denote all the queries of length exactly n that were made by M. Take
arbitrary x € {0,1}" \ @ (we know such an z exists, as discussed above). If b = 0, then
put z in B; if b =1, then take B to just be the empty set.

Now MB(1™) = b (since B returns 0 for every query made by M (1")), but this answer is incorrect
by construction of B. |

This claim is not enough to prove the desired result, since we need to reverse the order of
quantifiers and show that there exists a language B such that for all deterministic, poly-time M we
have Lp # L(M?P). We do this by extending the above argument. Consider an enumeration My, ...
of all deterministic, poly-time machines with running times pq,.... We will build B inductively.
Let By = 0 and ng = 1. Then in the i*" iteration do the following:

e Let n; be the smallest integer such that 2" > p;(n;) and also n; > p;(n;) for all 1 < j <.

e Run M;(1™) and respond to its queries according to B;_1. Let Q@ = {q1,...} be the queries
of length exactly n; that were made by M;, and let « € {0,1}"™ \ @ (again, we know such an
x exists). If b =0 then set B; = B;—1 U {x}; if b =1 then set B; = B;_; (and so B; does not
contain any strings of length n;).

Let B = U;B;. We claim that B has the desired properties. Indeed, when we run M;(1™) with
oracle access to B;, we can see (following the reasoning in the previous proof) that M; will output
the wrong answer (and thus MZ-B * does not decide Lp,). But the output of M;(1™) with oracle
access to B is the same as the output of M;(1™) with oracle access to B;, since all strings in B\ B;
have length greater than p;(n;) and so none of M;’s queries (on input 1) will be affected by using
B instead of B;. It follows that MZ-B does not decide Lpg.

Bibliographic Notes

This is adapted from [4, Lecture 26]. The result presented here is due to [2].

References

[1] E. Allender. Oracles versus Proof Techniques that Do Not Relativize. SIGAL Intl. Symposium
on Algorithms, pp. 39-52, 1990.

[2] T. Baker, J. Gill, and R. Solovay. Relativizations of the P ZNP Question. SIAM J. Computing
4(4): 431-442, 1975.

[3] L. Fortnow. The Role of Relativization in Complexity Theory. Bulletin of the European Asso-
ciation for Theoretical Computer Science, 52: 229-243, 1994.

[4] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

[5] J. Hartmanis, R. Chang, S. Chari, D. Ranjan, and P. Rohatgi. Relativization: A Revi-
sionist Retrospective. Current Trends in Theoretical Computer Science, 1993. Available from
http://www.cs.umbc.edu/ chang/papers/revisionist/.

on Relativization-2

