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1 Introduction and Background

We have already seen an “algebraic” approach to proving that computing parity requires exponential
size AC

0 circuits. Here we give a more combinatorial proof. Besides being interesting as a different
technique, it also gives a better lower bound on the size of AC

0 circuits needed to compute parity.
Recall that AC

0 is the set of languages/problems decided by constant-depth, polynomial-size
circuits (with gates of unbounded fan-in). We consider the basis consisting of AND, OR, and NOT
gates, though we do not count NOT gates when measuring the depth or size of the circuit.

A DNF formula on n variables is a disjunction of terms, each of which is a conjunction of
literals. E.g.,

f(x1, . . . , xn) = (x1 ∧ x̄2) ∨ (x7 ∧ x̄8 ∧ x̄11)

is a DNF formula. Analogously, a CNF formula is a conjunction of terms, each of which is a
disjunction of literals. The size of a DNF/CNF formula is the number of terms, and its width is
the maximum number of literals in any term.

A decision tree is a directed, acyclic graph with a designated start vertex having in-degree 0.
Each vertex other than the leaves has out-degree two. Each non-leaf vertex is labeled with a
variable, and has one outgoing edge labeled ‘0’ and one outgoing edge labeled ‘1’. Each leaf vertex
is labeled either ‘0’ or ‘1’. A decision tree computes a function in the natural way. The depth of
a decision tree is the maximum path length from the start to a leaf, and its size is the number of
leaves. For a function f , we write DTdepth(f) to denote the smallest depth of any decision tree
computing f . Note that any function on n variables always has DTdepth(f) ≤ n.

2 The Switching Lemma

Let f : {0, 1}n → {0, 1} be a function on n variables. An s-restriction α of f fixes n − s of the
variables to 0 or 1, and leaves the remaining s variables “free.” We write f |α for the reduced
function obtained. Note that if α is an s-restriction, then f |α is a function from {0, 1}s to {0, 1}.
When we say that we pick a uniform s-restriction, we mean that we choose a random subset of
n − s variables and fix each of those variables uniformly to 0 or 1.

The switching lemma states, roughly, that if f can be computed by a small-width DNF formula,
then a random restriction of f (with small number of free variables) can likely be computed with
a small-depth decision tree. Formally:

Theorem 1 Let f : {0, 1}n → {0, 1} be computed by a DNF formula of width at most w. Let α be
a random s-restriction with s = σn ≤ n/5. Then for any d ≥ 0,

Prα [DTdepth(f |α) > d] ≤ (10σw)d.
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Proof Fix some d and let B be the set of “bad” s-restrictions, i.e., those s-restrictions β for which
DTdepth(f |β) > d. We show that each bad restriction can be encoded using a “small” number of
bits, and thus B itself is “small” (at least in comparison to the set of all possible s-restrictions).

Let f be computed by the DNF formula T1 ∨ · · · ∨Tℓ, where each Ti contains at most w literals.
Restriction α kills a term Ti if it sets one of the literals in Ti to 0. (In that case, that term will
be removed from the DNF formula for f |α.) We say that α fixes a term Ti if it sets all the literals
in Ti to 1. (In that case, Ti—and hence the entire formula—becomes equal to the constant 1.) If
β ∈ B is a bad restriction, then we know that β does not fix any of the terms of f , nor does it kill
all the terms of f—if it did, then f |β would have a constant-depth decision tree.

Given some bad restriction β, we define a canonical decision tree for f |β as follows. Take
the first term Ti1 not killed by β, and say it has d1 free variables. Form the complete, depth-d1

decision tree over those variables, considering the variables in order. The (unique) 1-leaf of that
sub-tree becomes a 1-leaf in the canonical decision tree. For each of the 0-leaves of that sub-tree,
continue the process by fixing the variables according to the path to that leaf (thus defining a new
restriction β′), taking the first term not killed by β′, etc. (If what remains is the constant function,
then that leaf simply becomes a leaf in the canonical decision tree.)

Since β is bad, the canonical decision tree for f |β must, in particular, have depth greater than d.
Take a path of length exceeding d, and let P be the first d steps on that path. Fix the d variables
involved in P to their values taken on that path. Call the resulting (s − d)-restriction (which
consists of β plus d additional fixed variables) π.

Say P traverses sub-trees associated with clauses Ti1 , Ti2 , . . . , Tiℓ involving d1, d2, . . . free vari-
ables, with π possibly ending in the middle of Tiℓ . We encode β via an (s − d)-restriction γ plus
some auxiliary information. We determine γ in the following way: start with β. Then fix the d1

variables in Ti1 to the unique values such that Ti1 is fixed, the d2 variables in Ti2 to the unique
values such that Ti2 is fixed, etc. (We stress that γ does not correspond to π, since π does not fix
Ti1 , . . ..) As auxiliary information, we include for each clause (1) which variables in the clause are
the ones being fixed in each iteration, and (2) how those variables are set in π. The first of these
can be encoded using di · ⌈log(w + 1)⌉ ≤ di log w + di bits (we use an alphabet of size w + 1 that
can encode each possible position plus a special “termination” character), and the second can be
encoded using di bits.

We show that this encoding allows recovery of β, given f . Given the encoding, we find the first
clause Ti1 of f that is fixed under γ. The auxiliary information tells us what variables in that clause
were fixed when extending β, as well as how those variables are set in π. This process is continued
until we get a list of all variables that were set in forming γ (equivalently, π), thus allowing us to
recover the original restriction β.

How many bits did we use to encode β? We encoded β using an (s − d)-restriction γ plus
d log w+2d additional bits. So the total number of bad restrictions is at most

(

n
s−d

)

·2n−s+d · (4w)d,
and the fraction of bad restrictions is at most

(

n
s−d

)

· 2n−s+d · (4w)d
(

n
s

)

· 2n−s
≤

(

s

n − s + d

)d

(8w)d

≤
(

σ

1 − σ

)d

· (8w)d ≤ (10σw)d,

using σ < 1/5.
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Note that a similar proof applies when f is computed by a CNF formula. For our application
in the next section, it will be useful to rephrase the switching lemma based on the following
observation.

Lemma 2 If DTdepth(f) ≤ d, then f has a width-d DNF formula and a width-d CNF formula.

Proof Given a depth-d decision tree for f , we get a width-d DNF for f by simply taking the
disjunction of all the paths leading to 1-leaves.

Since f has a depth-d decision tree, so does ¬f . Hence ¬f has a width-d DNF. But then f has
a width-d CNF by applying de Morgan’s law.

Corollary 3 Let f : {0, 1}n → {0, 1} be computed by a DNF formula (resp., CNF formula) of
width at most w. Let α be a random s-restriction with s ≤ n/5. Then f |α can be computed by a
CNF formula (resp., DNF formula) of width w except with probability at most (10sw/n)w.

3 A Lower Bound for Parity

We use the switching lemma to derive a lower bound for the size of AC
0 circuits computing parity.

We rely on the following easy lemma.

Lemma 4 Any DNF (resp., CNF) formula computing parity (or its negation) on n-bit inputs must
have width n.

Proof We focus on DNF formulae; the case of CNF formulae is handled similarly. Say there is
a term T with fewer than n literals. Set the values of the variables so T evaluates to 1, and hence
the DNF formula evaluates to 1 regardless of how the remaining variables are set. But toggling the
value of any variable not in T should toggle the value of the function, a contradiction.

Theorem 5 For sufficiently large n, any depth-d circuit that computes parity on n-bit inputs must
have size at least 2Ω(n1/(d−1)).

Proof Say we have a depth-d circuit of size S computing parity. We will assume the following
about this circuit:

• NOT gates are only at the inputs.

• The circuit if layered, with gates at one layer feeding only into the next layer, and all gates
at a layer having the same type.

• Each gate has fanout 1. (The inputs can have unbounded fanout.)

The above are without loss of generality here, in the sense that any circuit of depth d and size S can
be converted to an equivalent circuit of the above form without increasing in the depth and with
size increasing to O((dS)d). Since d here is a constant, this does not affect the theorem statement.

Let w = 20 log S. Say for concreteness that the inputs feed into AND gates at the top level.
(The case of OR gates can be handled analogously.) We claim that we may assume without loss of
generality that every gate at the top level has fanin at most w. The reason is that, if not, we can
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apply a random restriction in which each variable is fixed with probability c = 2 −
√

2 ≈ 0.6 (and,
if so, is fixed to 0 or 1 with half probability each); one can show that, with positive probability, the
resulting circuit has no gates at the top level with fanin greater than w, and at least n/4 variables
remain free. Note that the resulting restricted function computes parity or its negation. Since the
number of variables is reduced by only a constant factor, this does not affect the theorem statement.

Having dispensed with various technicalities, we now come to the heart of the proof. Set n0 = n
and let ni = ni−1/20w for i = 1, . . . , d−2. The gates at the second layer of the circuit each compute
a DNF formula of width at most w. Focusing on any particular such gate, and applying Corollary 3
with an n1-restriction, we see that the output of that gate (after the restriction) can be computed
by a width-w CNF formula except with probability at most (10n1w/n0)

w = 2−20 log S ≪ 1/S. Since
there are at most S gates, a union bound shows that there exists an n1-restriction for which all
level-2 Choosing any such restriction, the DNF sub-circuits can then be swapped for width-w CNF
sub-circuits. But then the AND gates at levels 2 and 3 can then be coalesced, reducing the depth
by 1. Note that the restricted function still computes parity or its negation, now on n1-bit inputs.

Continuing, we repeatedly apply Corollary 3 for i = 2, . . . , d − 2. This gives a width-w CNF or
DNF formula computing parity on nd−2-bit inputs, where nd−2 = n·(1/20w)d−2 = n/(400 log S)d−2.
But then, using Lemma 4, we must have w = nd−2. This completes the proof.
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