
Notes on Complexity Theory Last updated: August, 2011

Lecture 1

Jonathan Katz

1 Turing Machines

I assume that most students have encountered Turing machines before. (Students who have not
may want to look at Sipser’s book [3].) A Turing machine is defined by an integer k ≥ 1, a finite
set of states Q, an alphabet Γ, and a transition function δ : Q×Γk → Q×Γk−1×{L, S,R}k where:

• k is the number of (infinite, one-dimensional) tapes used by the machine. In the general case
we have k ≥ 3 and the first tape is a read-only input tape, the last is a write-once output
tape, and the remaining k−2 tapes are work tapes. For Turing machines with boolean output
(which is what we will mostly be concerned with in this course), an output tape is unnecessary
since the output can be encoded into the final state of the Turing machine when it halts.

• Q is assumed to contain a designated start state qs and a designated halt state qh. (In the
case where there is no output tape, there are two halting states qh,0 and qh,1.)

• We assume that Γ contains {0, 1}, a “blank symbol”, and a “start symbol”.

• There are several possible conventions for what happens when a head on some tape tries
to move left when it is already in the left-most position, and we are agnostic on this point.
(Anyway, by our convention, below, that the left-most cell of each tape is “marked” there is
really no reason for this to ever occur. . .).

The computation of a Turing machine M on input x ∈ {0, 1}∗ proceeds as follows: All tapes of
the Turing machine contain the start symbol followed by blank symbols, with the exception of the
input tape which contains the start symbol followed by x (and then the remainder of the input tape
is filled with blank symbols). The machine starts in state q = qs with its k heads at the left-most
position of each tape. Then, until q is a halt state, repeat the following:

1. Let the current contents of the cells being scanned by the k heads be γ1, . . . , γk ∈ Γ.

2. Compute δ(q, γ1, . . . , γk) = (q′, γ′2, . . . , γ
′
k, D1, . . . , Dk) where q′ ∈ Q and γ′2, . . . , γ

′
k ∈ Γ and

Di ∈ {L, S, R}.
3. Overwrite the contents of the currently scanned cell on tape i to γ′i for 2 ≤ i ≤ k; move head

i to the left, to the same position, or to the right depending on whether Di = L, S, or R,
respectively; and then set the current state to q = q′.

The output of M on input x, denoted M(x), is the binary string contained on the output tape
(between the initial start symbol and the trailing blank symbols) when the machine halts. (When
there is no output tape, then the output is ‘1’ if M halts in state qh,1 and the output is ‘0’ is M
halts in state qh,0.) It is also possible that M never halts when run on some input x. We return to
this point later.

1-1

The running time of a Turing machine M on input x is simply the number of “steps” M takes
before it halts; that is, the number of iterations (equivalently, the number of times δ is computed)
in the above loop. Machine M is said to run in time T (·) if for every input x the running time of
M(x) is at most T (|x|). The space used by M on input x is the number of cells written to by M on
all its work tapes1 (a cell that is written to multiple times is only counted once); M is said to use
space T (·) if for every input x the space used during the computation of M(x) is at most T (|x|).
We remark that these time and space measures are worst-case notions; i.e., even if M runs in time
T (n) for only a fraction of the inputs of length n (and uses less time for all other inputs of length n),
the running time of M is still said to be T . (Average-case notions of complexity have also been
considered, but are somewhat more difficult to reason about.)

A Turing machine M computes a function f : {0, 1}∗ → {0, 1}∗ if M(x) = f(x) for all x.
Assuming f is a total function, and so is defined on all inputs, this in particular means that M
halts on all inputs. We will focus most of our attention on boolean functions, a context in which
it is more convenient to phrase computation in terms of languages. A language is simply a subset
of {0, 1}∗. There is a natural correspondence between languages and boolean functions: for any
boolean function f we may define the corresponding language L as the set L = {x | f(x) = 1}.
Conversely, for any language L we can define the boolean function f so that f(x) = 1 iff x ∈ L. A
Turing machine M decides a language L if

x ∈ L ⇔ M(x) = 1

(we sometimes also say that M accepts L, though we will try to be careful); this is the same as
computing the boolean function f that corresponds to L.

1.1 Comments on the Model

Turing machines are not meant as a model of modern computer systems. Rather, they were
introduced (before computers were even built!) as a mathematical model of what computation is.
Explicitly, the axiom is that “any function that can be computed in the physical world, can be
computed by a Turing machine”; this is the so-called Church-Turing thesis. (The thesis cannot
be proved unless one can formally define what it means to “compute a function in the physical
world” without reference to Turing machines. In fact, several alternate notions of computation
have been defined and shown to be equivalent to computation by a Turing machine; there are no
serious candidates for alternate notions of computation that are not equivalent to computation by
a Turing machine. See [1] for further discussion.) In fact, an even stronger axiom known as the
strong Church-Turing thesis is sometimes assumed to hold: this says that “any function that can be
computed in the physical world, can be computed with at most a polynomial reduction in efficiency
by a Turing machine”. This thesis is challenged by notions of randomized computation that we
will discuss later. In the past 15 years or so, however, this axiom has been called into question
by results on quantum computing that show polynomial-time algorithms in a quantum model of
computation for problems not known to have polynomial-time algorithms in the classical setting.

There are several variant definitions of Turing machines that are often considered; none of these
contradict the strong Church-Turing thesis. (That is, any function that can be computed on any of
these variant Turing machines, including the variant defined earlier, can be computed on any other

1Note that we do not count the space used on the input or output tapes; this allows us to meaningfully speak of
sub-linear space machines (with linear- or superlinear-length output).

1-2

variant with at most a polynomial increase in time/space.) Without being exhaustive, we list some
examples (see [1, 2] for more):

• One may fix Γ to only include {0, 1} and a blank symbol.

• One may restrict the tape heads to only moving left or right, not staying in place.

• One may fix k = 3, so that there is only one work tape. In fact, one may even consider k = 1
so that there is only a single tape that serves as input tape, work tape, and output tape.

• One can allow the tapes to be infinite in both directions, or two-dimensional.

• One can allow random access to the work tapes (so that the contents of the ith cell of some
tape can be read in one step). This gives a model of computation that fairly closely matches
real-world computer systems, at least at an algorithmic level.

The upshot of all of this is that it does not matter much which model one uses, as long as one is ok
with losing polynomial factors. On the other hand, if one is concerned about “low level” time/space
complexities then it is important to fix the exact model of computation under discussion. For
example, the problem of deciding whether an input string is a palindrome can be solved in time
O(n) on a two-tape Turing machine, but requires time Ω(n2) on a one-tape Turing machine.

1.2 Universal Turing Machines and Uncomputable Functions

An important observation (one that is, perhaps, obvious nowadays but was revolutionary in its
time) is that Turing machines can be represented by binary strings. In other words, we can view
a “program” (i.e., a Turing machine) equally well as “data”, and run one Turing machine on (a
description of) another. As a powerful example, a universal Turing machine is one that can be
used to simulate any other Turing machine. We define this next.

Fix some representation of Turing machines by binary strings, and assume for simplicity that
every binary string represents some Turing machine (this is easy to achieve by mapping badly
formed strings to some fixed Turing machine). Consider the function f(M, x) = M(x). Is f
computable?

Note: Here f is a partial function, since in this context the given Turing machine M
may not halt on the given input x and we leave f undefined in that case. A partial
function f is computable if there is a Turing machine U such that for all x where f
is defined we have U(x) = f(x). When f(x) is undefined the behavior of U may be
arbitrary. An alternative is to consider the (total) function

f ′(M,x, 1t) =
{

1 if M(x) halts within t steps with output 1
0 otherwise

,

whose computability is closely linked to that of f . Another natural possibility is to
consider the (total) function

fhalt(M, x) =
{

1 if M(x) halts with output 1
0 otherwise

;

as we will see, however, fhalt is not computable.

1-3

Perhaps surprisingly, f is computable. We stress that here we require there to be a fixed Turing
machine U , with a fixed number of tapes and a fixed alphabet (not to mention a fixed set of states)
that can simulate the behavior of an arbitrary Turing machine M that may use any number of
tapes and any size alphabet. A Turing machine computing f is called a universal Turing machine.

Theorem 1 There exists a Turing machine U such that (1) U(M, x) = M(x) for all x for which
M(x) is defined; furthermore, (2) for every M there exists a constant c such that the following
holds: for all x, if M(x) halts within T steps, then U(M, x) halts within c · T log T steps.

Proof We only sketch the proof here. We consider the case where M computes a boolean
function, and so has no output tape; U will not have an output tape either. U will use 3 work
tapes, and the alphabet Γ that only includes {0, 1}, a blank symbol, and a start symbol. At a high
level, U proceeds as follows:

1. First, U applies a transformation to M that results in a description of an equivalent ma-
chine M ′ that uses only a single work tape (in addition to its input tape). This is known to
be possible, and moreover is possible in such a way that the following holds: if M(x) halts
within T steps, then M ′(x) halts within O(T log T) steps (see [2, Chap. 12] or [1, Sect. 17]).
The description of M ′ is stored on the second work tape of U (the remaining work tapes of
U are used to perform the transformation).

2. Next, U applies a transformation to M ′ that results in a description of an equivalent ma-
chine M ′′ that uses the binary alphabet (plus blank and start symbol). This is known to be
possible with only a constant-factor loss of efficiency (see [1, 2]). Thus if M(x) halts within
T steps, then M ′′(x) halts within O(T log T) steps. The description of M ′′ is stored on the
first work tape of U (the 3rd work tape of U can be used to perform the transformation).

3. Finally, U simulates the execution of M ′′ on input x. It can do this by recording the current
state of M ′′ on its second work tape (recall that the description of M ′′ itself is stored on the
first work tape of U) and using its third work tape to store the contents of the work tape
of M ′′. To simulate each step of M ′′, we have U simply scan the entire description of M ′′ until
it finds a transition rule matching the current state of M ′′, the current value being scanned
in the input x, and the current value being scanned in the work tape of M ′′. This rule is then
used by U to update the recorded state of M ′′, to move its heads on its input tape and third
work tape (which is storing the work tape of M ′′), and to rewrite the value being scanned on
the work tape of M ′′. If M ′′ halts, then U simply needs to check whether the final state of
M ′′ was an accepting state or a rejecting state, and move into the appropriate halting state
of its own.

It is not hard to see that U(M,x) = M(x) for any x for which M(x) halts. As for the claim about
the running time, we note the following: the first and second steps of U take time that depends
on M but is independent of x. In the third step of U , each step of M ′′ is simulated using some
number of steps that depends on M ′′ (and hence M) but is again independent of x. We have noted
already that if M(x) halts in T steps then M ′′(x) halts in c′′ · T log T steps for some constant c′′

that depends on M but not on x. Thus U(M, x) halts in c · T log T steps for some constant c that
depends on M but not on x.

We have shown that (the partial function) f is computable. What about (the function) fhalt?
By again viewing Turing machines as data, we can show that this function is not computable.

1-4

Theorem 2 The function fhalt is not computable.

Proof Say there is some Turing machine Mhalt computing fhalt. Then we can define the following
machine M∗:

On input (a description of) a Turing machine M , output Mhalt(M, M). If the result
is 1, output 0; otherwise output 1.

What happens when we run M∗ on itself ? Consider the possibilities for the result M∗(M∗):

• Say M∗(M∗) = 1. This implies that Mhalt(M∗,M∗) = 0. But that means that M∗(M∗) does
not halt with output 1, a contradiction.

• Say M∗(M∗) = 0. This implies that Mhalt(M∗,M∗) = 1. But that means that M∗(M∗) halts
with output 1, a contradiction.

• It is not possible for M∗(M∗) to never halt, since Mhalt(M∗,M∗) is a total function (and so
is supposed to halt on all inputs).

We have reached a contradiction in all cases, implying that Mhalt as described cannot exist.

Remark: The fact that fhalt is not computable does not mean that the halting problem cannot
be solved “in practice”. In fact, checking termination of programs is done all the time in industry.
Of course, they are not using algorithms that are solving the halting problem – this would be
impossible! Rather, they use programs that may give false negative, i.e., that may claim that some
other program does not halt when it actually does. The reason this tends to work in practice is
that the programs that people want to reason about in practice tend to have a form that makes
them amenable to analysis.

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

[2] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company, 1979.

[3] M. Sipser. Introduction to the Theory of Computation (2nd edition). Course Technology, 2005.

1-5

