Notes on Complexity Theory

Lecture 11

Jonathan Katz

1 Non-Uniform Complexity

1.1 Circuit Lower Bounds for a Language in $\Sigma_2 \cap \Pi_2$

We have seen that there exist "very hard" languages (i.e., languages that require circuits of size $(1 - \varepsilon)2^n/n$). If we can show that there exists a language in \mathcal{NP} that is even "moderately hard" (i.e., requires circuits of super-polynomial size) then we will have proved $\mathcal{P} \neq \mathcal{NP}$. (In some sense, it would be even nicer to show some *concrete* language in \mathcal{NP} that requires circuits of super-polynomial size. But mere existence of such a language is enough.)

Here we show that for every c there is a language in $\Sigma_2 \cap \Pi_2$ that is not in SIZE (n^c) . Note that this does not prove $\Sigma_2 \cap \Pi_2 \not\subseteq \mathcal{P}_{/poly}$ since, for every c, the language we obtain is different. (Indeed, using the time hierarchy theorem, we have that for every c there is a language in \mathcal{P} that is not in TIME (n^c) .) What is particularly interesting here is that (1) we prove a non-uniform lower bound and (2) the proof is, in some sense, rather simple.

Theorem 1 For every c, there is a language in $\Sigma_4 \cap \Pi_4$ that is not in SIZE (n^c) .

Proof Fix some c. For each n, let C_n be the lexicographically first circuit on n inputs such that (the function computed by) C_n cannot be computed by any circuit of size at most n^c . By the non-uniform hierarchy theorem (see [1]), there exists such a C_n of size at most n^{c+1} (for n large enough). Let L be the language decided by $\{C_n\}$, and note that we trivially have $L \notin SIZE(n^c)$.

We claim that $L \in \Sigma_4 \cap \Pi_4$. Indeed, $x \in L$ iff (|et |x| = n):

- 1. There exists a circuit C of size at most n^{c+1} such that
- 2. For all circuits C' (on *n* inputs) of size at most n^c , and for all circuits *B* (on *n* inputs) lexicographically preceding *C*,
- 3. There exists an input $x' \in \{0, 1\}^n$ such that $C'(x) \neq C(x)$, and there exists a circuit B' of size at most n^c such that
- 4. For all $w \in \{0,1\}^n$ it holds that B(w) = B'(w) and
- 5. C(x) = 1.

Note that that above guesses C and then verifies that $C = C_n$, and finally computes C(x). This shows that $L \in \Sigma_4$, and by flipping the final condition we have that $\overline{L} \in \Sigma_4$.

We now "collapse" the above to get the claimed result — non-constructively:

Corollary 2 For every c, there is a language in $\Sigma_2 \cap \Pi_2$ that is not in SIZE (n^c) .

Proof Say $\mathcal{NP} \not\subseteq \mathcal{P}_{/poly}$. Then $\mathsf{SAT} \in \mathcal{NP} \subseteq \Sigma_2 \cap \Pi_2$ but $\mathsf{SAT} \notin \mathsf{SIZE}(n^c)$ and we are done. On the other hand, if $\mathcal{NP} \subseteq \mathcal{P}_{/poly}$ then by the Karp-Lipton theorem $\mathsf{PH} = \Sigma_2 = \Pi_2$ and we may take the language given by the previous theorem.

1.2 Small Depth Circuits and Parallel Computation

Circuit depth corresponds to the time required for the circuit to be evaluated; this is also evidenced by the proof that $\mathcal{P} \subseteq \mathcal{P}_{/poly}$. Moreover, a circuit of size *s* and depth *d* for some problem can readily be turned into a parallel algorithm for the problem using *s* processors and running in "wall clock" time *d*. Thus, it is interesting to understand when low-depth circuits for problems exist. From a different point of view, we might expect that *lower bounds* would be easier to prove for low-depth circuits. These considerations motivate the following definitions.

Definition 1 Let $i \ge 0$. Then

- $L \in \mathsf{NC}^i$ if L is decided by a circuit family $\{C_n\}$ of polynomial size and $O(\log^i n)$ depth over the basis \mathcal{B}_0 .
- $L \in AC^i$ if L is decided by a circuit family $\{C_n\}$ of polynomial size and $O(\log^i n)$ depth over the basis \mathcal{B}_1 .

 $NC = \bigcup_i NC^i$ and $AC = \bigcup_i AC^i$.

Note $NC^i \subseteq AC^i \subseteq NC^{i+1}$. Also, NC^0 is not a very interesting class since the function computed by a constant-depth circuit over \mathcal{B}_0 can only depend on a constant number of bits of the input.

If we want NC and AC to represent feasible algorithms then we need to make sure that the circuit family is *uniform*, i.e., can be computed efficiently. In the case of NC and AC, the right notion to use is *logspace uniformity*:

Definition 2 Circuit family $\{C_n\}$ is logspace-uniform if the function mapping 1^n to C_n can be computed using $O(\log n)$ space. Equivalently, each of the following functions can be computed in $O(\log n)$ space:

- size (1^n) returns the number of gates in C_n (expressed in binary). By convention the first n gates are the input gates and the final gate is the output gate.
- type $(1^n, i)$ returns the label (i.e., type of gate) of gate i in C_n .
- $edge(1^n, i, j)$ returns 1 iff there is a (directed) edge from gate i to gate j in C_n .

This gives rise to logspace-uniform NC^i , etc., which we sometimes denote by prefixing u (e.g., u-NC).

Designing low-depth circuits for problems can be quite challenging. Consider as an example the case of binary addition. The "grade-school" algorithm for addition is inherently *sequential*, and expressing it as a circuit would yield a circuit of linear depth. (In particular, the high-order bit of the output depends on the high-order carry bit, which in the grade-school algorithm is only computed after the second-to-last bit of the output is computed.) Can we do better?

Lemma 3 Addition can be computed in logspace-uniform AC^0 .

Proof Let $a = a_n \cdots a_1$ and $b = b_n \cdots b_1$ denote the inputs, written so that a_n, b_n are the highorder bits. Let c_i denote the "carry bit" for position i, and let d_i denote the ith bit of the output. In the "grade-school" algorithm, we set $c_1 = 0$ and then iteratively compute c_{i+1} and d_i from a_i, b_i , and c_i . However, we can note that c_{i+1} is 1 iff $a_i = b_i = 1$, or $a_{i-1} = b_{i-1} = 1$ (so $c_i = 1$) and at least one of a_i or b_i is 1, or ..., or $a_1 = b_1 = 1$ and for j = 2, ..., i at least one of a_j or b_j is 1. That is,

$$c_{i+1} = \bigvee_{k=1}^{i} (a_k \wedge b_k) \wedge (a_{k+1} \vee b_{k+1}) \cdots \wedge (a_i \vee b_i).$$

So the $\{c_i\}$ can be computed by a constant-depth circuit over \mathcal{B}_1 . Finally, each bit d_i of the output can be easily computed from a_i, b_i , and c_i .

(Variants of) the circuit given by the previous lemma are used for addition in modern hardware.

There is a close relationship between logarithmic-depth circuits and logarithmic-space algorithms:

Theorem 4 u-NC¹ \subseteq L \subseteq NL \subseteq u-AC¹.

Proof (Sketch) A logarithmic-space algorithm for any language in logspace-uniform NC^1 follows by recursively computing the values on the wires of a gate's parents, re-using space.

For the second inclusion, we show the more general result that NSPACE(s(n)) can be computed by a circuit family of depth O(s(n)) over the unbounded fan-in basis \mathcal{B}_1 . The idea, once again, is to use reachability. Let M be a non-deterministic machine deciding L in space t. Let $N(n) = 2^{O(s(n))}$ denote the number of configurations of M on any fixed input x of length n. Fix n, let N = N(n), and we will construct C_n . On input $x \in \{0, 1\}^n$, our circuit does the following:

- 1. Construct the $N \times N$ adjacency matrix A_x in which entry (i, j) is 1 iff M can make a transition (in one step) from configuration i to configuration j on input x.
- 2. Compute the transitive closure of A_x . In particular, this allows us to check whether there is a path from the initial configuration of M (on input x) to the accepting configuration of M.

We show that these computations can be done in the required depth. The matrix A_x can be computed in *constant* depth, since each entry (i, j) is either always 0, always 1, or else depends on only 1 bit of the input (this is because the input head position is part of a configuration). To compute the transitive closure of A_x , we need to compute $(A_x \vee I)^N$. (Note: multiplication and addition here correspond to \wedge and \vee , respectively.) Using associativity of matrix multiplication, this can be done in a tree-wise fashion using a tree of depth log N = O(s(n)) where each node performs a single matrix multiplication. Matrix multiplication can be performed in constant depth over \mathcal{B}_1 : to see this, note that the $(i, j)^{\text{th}}$ entry of matrix AB (where A, B are two $N \times N$ matrices given as input) is given by

$$(AB)_{i,j} = \bigvee_{1 \le k \le N} (A_{i,k} \land B_{k,j}) \,.$$

The theorem follows.

Can all of \mathcal{P} be parallelized? Equivalently, is $\mathcal{P} = u$ -NC? To study this question we can, as usual, focus on the "hardest" problems in \mathcal{P} :

Definition 3 *L* is \mathcal{P} -complete if $L \in \mathcal{P}$ and every $L' \in \mathcal{P}$ is logspace-reducible to *L*.

Using Theorem 4 we have

Claim 5 If L is \mathcal{P} -complete, then $L \in \mathsf{NC}$ iff $\mathcal{P} \subset \mathsf{NC}$.

An immediate \mathcal{P} -complete language is given by

$$\mathsf{CKT}\mathsf{-}\mathsf{EVAL} \stackrel{\text{def}}{=} \{ (C, x) \mid C(x) = 1 \},\$$

where a logarithmic-space reduction from any language in \mathcal{P} to CKT-EVAL can be derived from a more careful version of the proof that $\mathcal{P} \subseteq \mathcal{P}_{/poly}$.

Bibliographic Notes

The result of Section 1.1 is by Kannan [3]; the presentation here is adapted from [2].

References

- S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press, 2009.
- [2] S. Jukna. Boolean Function Complexity: Advances and Frontiers, Springer, 2012.
- [3] R. Kannan. Cicruit-size lower bounds and non-reducibility to sparse sets. *Information and Control* 55(1–3): 40–56, 1982.