
Notes on Complexity Theory Last updated: October, 2011

Lecture 11

Jonathan Katz

1 Non-Uniform Complexity

1.1 Circuit Lower Bounds for a Language in Σ2 ∩ Π2

We have seen that there exist “very hard” languages (i.e., languages that require circuits of size
(1 − ε)2n/n). If we can show that there exists a language in NP that is even “moderately hard”
(i.e., requires circuits of super-polynomial size) then we will have proved P 6= NP. (In some
sense, it would be even nicer to show some concrete language in NP that requires circuits of
super-polynomial size. But mere existence of such a language is enough.)

Here we show that for every c there is a language in Σ2 ∩Π2 that is not in size(nc). Note that
this does not prove Σ2∩Π2 6⊆ P/poly since, for every c, the language we obtain is different. (Indeed,
using the time hierarchy theorem, we have that for every c there is a language in P that is not in
time(nc).) What is particularly interesting here is that (1) we prove a non-uniform lower bound
and (2) the proof is, in some sense, rather simple.

Theorem 1 For every c, there is a language in Σ4 ∩Π4 that is not in size(nc).

Proof Fix some c. For each n, let Cn be the lexicographically first circuit on n inputs such
that (the function computed by) Cn cannot be computed by any circuit of size at most nc. By the
non-uniform hierarchy theorem (see [1]), there exists such a Cn of size at most nc+1 (for n large
enough). Let L be the language decided by {Cn}, and note that we trivially have L 6∈ size(nc).

We claim that L ∈ Σ4 ∩Π4. Indeed, x ∈ L iff (let |x| = n):

1. There exists a circuit C of size at most nc+1 such that

2. For all circuits C ′ (on n inputs) of size at most nc,
and for all circuits B (on n inputs) lexicographically preceding C,

3. There exists an input x′ ∈ {0, 1}n such that C ′(x) 6= C(x),
and there exists a circuit B′ of size at most nc such that

4. For all w ∈ {0, 1}n it holds that B(w) = B′(w) and

5. C(x) = 1.

Note that that above guesses C and then verifies that C = Cn, and finally computes C(x). This
shows that L ∈ Σ4, and by flipping the final condition we have that L̄ ∈ Σ4.

We now “collapse” the above to get the claimed result — non-constructively:

Corollary 2 For every c, there is a language in Σ2 ∩Π2 that is not in size(nc).

Proof Say NP 6⊆ P/poly. Then SAT ∈ NP ⊆ Σ2 ∩Π2 but SAT 6∈ size(nc) and we are done. On
the other hand, if NP ⊆ P/poly then by the Karp-Lipton theorem PH = Σ2 = Π2 and we may take
the language given by the previous theorem.

11-1

1.2 Small Depth Circuits and Parallel Computation

Circuit depth corresponds to the time required for the circuit to be evaluated; this is also evidenced
by the proof that P ⊆ P/poly. Moreover, a circuit of size s and depth d for some problem can readily
be turned into a parallel algorithm for the problem using s processors and running in “wall clock”
time d. Thus, it is interesting to understand when low-depth circuits for problems exist. From a
different point of view, we might expect that lower bounds would be easier to prove for low-depth
circuits. These considerations motivate the following definitions.

Definition 1 Let i ≥ 0. Then

• L ∈ NC i if L is decided by a circuit family {Cn} of polynomial size and O(logi n) depth over
the basis B0.

• L ∈ AC i if L is decided by a circuit family {Cn} of polynomial size and O(logi n) depth over
the basis B1.

NC =
⋃

i NC i and AC =
⋃

i AC i.

Note NC i ⊆ AC i ⊆ NC i+1. Also, NC0 is not a very interesting class since the function computed
by a constant-depth circuit over B0 can only depend on a constant number of bits of the input.

If we want NC and AC to represent feasible algorithms then we need to make sure that the
circuit family is uniform, i.e., can be computed efficiently. In the case of NC and AC, the right
notion to use is logspace uniformity :

Definition 2 Circuit family {Cn} is logspace-uniform if the function mapping 1n to Cn can be
computed using O(log n) space. Equivalently, each of the following functions can be computed in
O(log n) space:

• size(1n) returns the number of gates in Cn (expressed in binary). By convention the first n
gates are the input gates and the final gate is the output gate.

• type(1n, i) returns the label (i.e., type of gate) of gate i in Cn.

• edge(1n, i, j) returns 1 iff there is a (directed) edge from gate i to gate j in Cn.

This gives rise to logspace-uniform NCi, etc., which we sometimes denote by prefixing u (e.g., u-NC).
Designing low-depth circuits for problems can be quite challenging. Consider as an example

the case of binary addition. The “grade-school” algorithm for addition is inherently sequential,
and expressing it as a circuit would yield a circuit of linear depth. (In particular, the high-order
bit of the output depends on the high-order carry bit, which in the grade-school algorithm is only
computed after the second-to-last bit of the output is computed.) Can we do better?

Lemma 3 Addition can be computed in logspace-uniform AC0.

Proof Let a = an · · · a1 and b = bn · · · b1 denote the inputs, written so that an, bn are the high-
order bits. Let ci denote the “carry bit” for position i, and let di denote the ith bit of the output.
In the “grade-school” algorithm, we set c1 = 0 and then iteratively compute ci+1 and di from ai, bi,
and ci. However, we can note that ci+1 is 1 iff ai = bi = 1, or ai−1 = bi−1 = 1 (so ci = 1) and at

11-2

least one of ai or bi is 1, or . . . , or a1 = b1 = 1 and for j = 2, . . . , i at least one of aj or bj is 1.
That is,

ci+1 =
i∨

k=1

(ak ∧ bk) ∧ (ak+1 ∨ bk+1) · · · ∧ (ai ∨ bi).

So the {ci} can be computed by a constant-depth circuit over B1. Finally, each bit di of the output
can be easily computed from ai, bi, and ci.

(Variants of) the circuit given by the previous lemma are used for addition in modern hardware.
There is a close relationship between logarithmic-depth circuits and logarithmic-space algo-

rithms:

Theorem 4 u-NC1 ⊆ L ⊆ NL ⊆ u-AC1.

Proof (Sketch) A logarithmic-space algorithm for any language in logspace-uniform NC1 follows
by recursively computing the values on the wires of a gate’s parents, re-using space.

For the second inclusion, we show the more general result that nspace(s(n)) can be computed
by a circuit family of depth O(s(n)) over the unbounded fan-in basis B1. The idea, once again, is to
use reachability. Let M be a non-deterministic machine deciding L in space t. Let N(n) = 2O(s(n))

denote the number of configurations of M on any fixed input x of length n. Fix n, let N = N(n),
and we will construct Cn. On input x ∈ {0, 1}n, our circuit does the following:

1. Construct the N×N adjacency matrix Ax in which entry (i, j) is 1 iff M can make a transition
(in one step) from configuration i to configuration j on input x.

2. Compute the transitive closure of Ax. In particular, this allows us to check whether there is
a path from the initial configuration of M (on input x) to the accepting configuration of M .

We show that these computations can be done in the required depth. The matrix Ax can be
computed in constant depth, since each entry (i, j) is either always 0, always 1, or else depends
on only 1 bit of the input (this is because the input head position is part of a configuration). To
compute the transitive closure of Ax, we need to compute (Ax ∨ I)N . (Note: multiplication and
addition here correspond to ∧ and ∨, respectively.) Using associativity of matrix multiplication,
this can be done in a tree-wise fashion using a tree of depth log N = O(s(n)) where each node
performs a single matrix multiplication. Matrix multiplication can be performed in constant depth
over B1: to see this, note that the (i, j)th entry of matrix AB (where A,B are two N ×N matrices
given as input) is given by

(AB)i,j =
∨

1≤k≤N

(Ai,k ∧Bk,j) .

The theorem follows.

Can all of P be parallelized? Equivalently, is P = u-NC? To study this question we can, as
usual, focus on the “hardest” problems in P:

Definition 3 L is P-complete if L ∈ P and every L′ ∈ P is logspace-reducible to L.

Using Theorem 4 we have

Claim 5 If L is P-complete, then L ∈ NC iff P ⊂ NC.

11-3

An immediate P-complete language is given by

CKT-EVAL
def= {(C, x) | C(x) = 1},

where a logarithmic-space reduction from any language in P to CKT-EVAL can be derived from a
more careful version of the proof that P ⊆ P/poly.

Bibliographic Notes

The result of Section 1.1 is by Kannan [3]; the presentation here is adapted from [2].

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

[2] S. Jukna. Boolean Function Complexity: Advances and Frontiers, Springer, 2012.

[3] R. Kannan. Cicruit-size lower bounds and non-reducibility to sparse sets. Information and
Control 55(1–3): 40–56, 1982.

11-4

