
Notes on Complexity Theory Last updated: October, 2011

Lecture 12

Jonathan Katz

1 Randomized Time Complexity

Is deterministic polynomial-time computation the only way to define “feasible” computation? Al-
lowing probabilistic algorithms, that may fail with tiny probability, seems reasonable. (In particular,
consider an algorithm whose error probability is lower than the probability that there will be a hard-
ware error during the computation, or the probability that the computer will be hit by a meteor
during the computation.) This motivates our exploration of probabilistic complexity classes.

There are two different ways to define a randomized model of computation. The first is via Tur-
ing machines with a probabilistic transition function: as in the case of non-deterministic machines,
we have a Turing machine with two transitions functions, and a random one is applied at each
step. The second way to model randomized computation is by augmenting Turing machines with
an additional (read-only) random tape. For the latter approach, one can consider either one-way
or two-way random tapes; the difference between these models is unimportant for randomized time
complexity classes, but (as we will see) becomes important for randomized space classes. Whichever
approach we take, we denote by M(x) a random computation of M on input x, and by M(x; r)
the (deterministic) computation of M on input x using random choices r (where, in the first case,
the ith bit of r determines which transition function is used at the ith step, and in the second case
r is the value written on M ’s random tape).

We now define some randomized time-complexity classes; in the following, ppt stands for “prob-
abilistic, polynomial time” (where this is measured as worst-case time complexity over all inputs,
and as always the running time is measured as a function of the length of the input x).

Definition 1 L ∈ RP if there exists a ppt machine M such that:

x ∈ L ⇒ Pr[M(x) = 1] ≥ 1/2
x 6∈ L ⇒ Pr[M(x) = 0] = 1.

Note that if M(x) outputs “1” we are sure that x ∈ L; if M(x) outputs “0” we cannot make any
definitive claim.

Viewing M as a non-deterministic machine for L, the above means that when x ∈ L at least
half of the computation paths of M(x) accept, and when x 6∈ L then none of the computation paths
of M(x) accept. Put differently, a random tape r for which M(x; r) = 1 serves as a witness that
x ∈ L. We thus have RP ⊆ NP.

Symmetrically:

Definition 2 L ∈ coRP if there exists a ppt machine M such that:

x ∈ L ⇒ Pr[M(x) = 1] = 1
x 6∈ L ⇒ Pr[M(x) = 0] ≥ 1/2.

12-1

Here, if M(x) outputs “0’ we are sure that x 6∈ L, but if M(x) outputs “1” we cannot make any
definitive claim.

The above classes allow one-sided error. A more general notion of randomized computation
allows for two-sided error. For a language L, let χL(x) = 1 iff x ∈ L.

Definition 3 L ∈ BPP if there exists a ppt machine M such that:

Pr[M(x) = χL(x)] ≥ 2/3.

In other words,

x ∈ L ⇒ Pr[M(x) = 1] ≥ 2/3
x 6∈ L ⇒ Pr[M(x) = 1] ≤ 1/3.

Finally, we may also consider randomized algorithms that make no errors (but may not give a
result at all):

Definition 4 L ∈ ZPP if there exists a ppt machine M such that:

Pr[M(x) = χL(x)] ≥ 1/2

Pr [M(x) ∈ {χL(x),⊥}] = 1.

We now explore these definitions further. A first observation is that, for all the above definitions,
the constants are essentially arbitrary. We focus on the case of BPP and leave consideration of the
rest as an exercise.

Theorem 1 The following are both equivalent definitions of BPP:

1. L ∈ BPP if there exists a ppt machine M and a polynomial p such that:

Pr[M(x) = χL(x)] ≥ 1
2

+
1

p(|x|) .

2. L ∈ BPP if there exists a ppt machine M and a polynomial q such that:

Pr[M(x) = χL(x)] ≥ 1− 2−q(|x|).

Proof We show how to transform an algorithm M satisfying the first definition into an algorithm
M ′ satisfying the second definition. M ′(x) is defined as follows: run M(x) a total of t(|x|) times
(for some polynomial t to be fixed later) using independent random coins in each execution. Then
M ′ outputs the bit that was output by a majority of these executions.

To analyze the behavior of M ′, we rely on the Chernoff bound [?, Chap. 4]:

Claim 2 Let p ≤ 1
2 and let X1, . . . , Xn be independent, identically-distributed 0-1 random variables

with Pr[Xi = 1] = p for each i. Then for all ε with 0 < ε ≤ p(1− p) we have:

Pr
[∣∣∣∣

∑n
i=1 Xi

n
− p

∣∣∣∣ > ε

]
< 2 · e− ε2n

2p(1−p) ≤ 2 · e−2nε2
.

12-2

Let Xi denote the output of the ith execution of M(x). When x 6∈ L

Pr[Xi = 1] <
1
2
− 1

p(|x|)
def= ρ.

Furthermore, by definition of M ′ (letting t
def= t(|x|)):

Pr[M ′(x) = 1] = Pr

[∑t
i=1 Xi

t
>

1
2

]

≤ Pr

[∣∣∣∣∣
∑t

i=1 Xi

t
− ρ

∣∣∣∣∣ >
1

p(|x|)

]

< 2 · e−
2t

p(|x|)2 .

Setting t = O
(
q(|x|) · p(|x|)2) gives the desired result. (An exactly analogous argument works for

the case x ∈ L.)

How do the above classes relate to each other? It is immediate that

RP ∪ coRP ⊆ BPP,

and so BPP is a (potentially) more powerful class. Indeed, BPP appears to capture feasible
probabilistic computation. We also claim that

ZPP = RP ∩ coRP;

this is left as an exercise. A third characterization of ZPP is in terms of expected polynomial-time
algorithms that always output the correct answer. Let M be a probabilistic Turing machine. We
say that M runs in expected time t(n) if, for every x ∈ {0, 1}n, the expected running time of M(x)
is at most t(n). Then:

Claim 3 L ∈ ZPP iff there exists an expected polynomial-time Turing machine M such that

Pr[M(x) = χL(x)] = 1.

How about a “minimal” notion of correctness for probabilistic algorithms, where we only require
correctness with probability arbitrarily better than guessing? This gives rise to a class called PP:

Definition 5 L ∈ PP if there exists a ppt machine M such that:

Pr[M(x) = χL(x)] > 1/2.

In other words,

x ∈ L ⇒ Pr[M(x) = 1] > 1/2
x 6∈ L ⇒ Pr[M(x) = 1] < 1/2.

A little thought shows that this is not a reasonable notion of probabilistic computation. The
problem is that the gap between outputting the correct answer and the wrong answer might be
exponentially small (in contrast to BPP, where the gap must be some inverse polynomial); in
particular, amplification does not work here. As some further evidence against the reasonableness
of PP, we have NP ⊆ PP (this, too, is left as an exercise); thus, this notion of probabilistic
computation can solve all of NP!

12-3

1.1 Examples of Randomized Algorithms

There are several examples of where randomized algorithms are more efficient, or simpler, than
known deterministic algorithms. However, there are not as many examples of problems that are
known to be solvable by polynomial-time randomized algorithms, but not known to be solved by
polynomial-time deterministic algorithms. One famous former example was testing primality: this
problem was known to be in coRP since the late 1970s, but was only shown to be in P in 2005.
(Nevertheless, in practice the randomized algorithms are still used since they are faster.)

A search problem for which probabilistic polynomial-time algorithms are known, but determin-
istic polynomial-time algorithms are not, is computing square roots modulo a prime.

Polynomial identity testing. Another interesting example is given by the problem of testing
equality of arithmetic circuits. Here we work with circuits that take integers (rather than boolean
values) as input, and where gates compute +,−, and × (over the integers); the output is an integer.
Say we want to test whether two circuits C1, C2 compute the same function. Note that this easily
reduces to deciding the following language:

ZEROP
def= {C | C outputs 0 on all inputs}.

Any arithmetic circuit is equivalent to a multivariate polynomial over the integers; in principle,
then, we can decide membership in ZEROP by expanding and writing out the polynomial to see
whether it is identically 0. (This explains the name ZEROP for the language above: we are testing
whether an implicitly defined polynomial is the 0 polynomial.) In an arithmetic circuit with m
gates, however, the (total) degree1 of the equivalent polynomial can be as high as 2m, and so even
just writing out all the terms of the polynomial may require exponential time! This is therefore
not a viable approach for an efficient algorithm.

In fact, there is no known (efficient) deterministic algorithm for this problem. Instead, we
make use of the Schwartz-Zippel lemma (which is useful in many contexts). We state it here for
polynomials over the integers, but it also holds over any field.

Lemma 4 Let p(X1, . . . , Xn) be a non-zero polynomial of total degree at most d, and let S be any
finite set of integers. Then

Prx1,...,xn←S [p(x1, . . . , xn) = 0] ≤ d/|S|.

Proof The proof is by induction on n. When n = 1, a non-zero polynomial p(X1) of degree at
most d has at most d roots and the lemma follows. Now assume the lemma is true for n − 1 and
prove that it holds for n. Given a polynomial p(X1, . . . , Xn) of total degree d, we may write

p(X1, . . . , Xn) =
d′∑

i=0

pi(X1, . . . , Xn−1) ·Xi
n, (1)

for some d′ ≤ d and pd′(X1, . . . , Xn−1) a non-zero polynomial of total degree at most d− d′. When
x1, . . . , xn−1 are chosen at random from S, the inductive assumption tells us that pd′(x1, . . . , xn−1) =
0 with probability at most (d − d′)/|S|. When pd′(x1, . . . , xn−1) 6= 0, then (1) is a polynomial of

1The total degree of a monomial is the sum of the degrees in each variable; the total degree of a multivariate
polynomial largest total degree of any monomial.

12-4

degree d′ in the single variable Xn, and so the probability (over random choice of xn ∈ S) that
p(x1, . . . , xn−1, xn) = 0 is at most d′/|S|. Putting everything together, we have

Prx1,...,xn←S [p(x1, . . . , xn) = 0] ≤ d− d′

|S| +
(

1− d− d′

|S|
)
· d′

|S|
≤ d

|S| .

This completes the proof.

The above suggests a simple randomized algorithm: given an arithmetic circuit C with m
gates, and n inputs X1, . . . , Xn, choose x1, . . . , xn ← {1, . . . , 2m+1} and evaluate C(x1, . . . , xn). If
the output is 0, accept; if the output is non-zero, reject. If C ∈ ZEROP, then this algorithm always
accepts, while if C 6∈ ZEROP then the algorithm rejects with probability at least 1/2. (This is thus
a coRP algorithm for ZEROP.)

There is, however, a problem with the algorithm: as written, it is not efficient. The difficulty is
that the value of C(2m+1, . . . , 2m+1) may be as high as (2m+1)2

m
, which would require exponentially

many bits to write down. We can solve this by “fingerprinting”; see [1] for details.

Perfect matching in bipartite graphs. We can use similar ideas to give an efficient randomized
algorithm for detecting the existence of a perfect matching in a bipartite graph. (Although this
problem is in P, the randomized algorithm we show can be implemented in randomized-NC.) Let
G be an n × n matrix representing a bipartite graph on 2n vertices, where Gi,j = Xi,j if there is
an edge from i to j, and Gi,j = 0 otherwise. The determinant of G is

det(G) =
∑

σ

(−1)sign(σ)
n∏

i=1

Gi,σ(i),

and we see that det(G) is a non-zero polynomial (in the variables X1,1, . . . , Xn,n) iff the underlying
graph has a perfect matching. Calculating the polynomial det(G) cannot be done efficiently, since
it may have exponentially many terms; however, we can evaluate det(G) for any given values o
using standard algorithms for computing the determinant. We can thus use the Shwartz-Zippel
lemma and the ideas seen previously to construct a randomized algorithm for this problem.

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

12-5

