
Notes on Complexity Theory Last updated: October, 2011

Lecture 15

Jonathan Katz

1 Randomized Space Complexity

1.1 Undirected Connectivity and Random Walks

1.1.1 Markov Chains

We now develop some machinery that gives a different, and somewhat more general, perspective
on random walks. In addition, we get better bounds for the probability that we hit t. (Note that
the previous analysis calculated the probability that we end at vertex t. But it would be sufficient
to pass through vertex t at any point along the walk.) The drawback is that here we rely on some
fundamental results concerning Markov chains that are presented without proof.

We begin with a brief introduction to (finite, time-homogeneous) Markov chains. A sequence of
random variables X0, . . . over a space Ω of size n is a Markov chain if there exist {pi,j} such that,
for all t > 0 and x0, . . . , xt−2, xi, xj ∈ Ω we have:

Pr[Xt = xj | X0 = x0, . . . , Xt−2 = xt−2, Xt−1 = xi] = Pr[Xt = xj | Xt−1 = xi] = pj,i.

In other words, Xt depends only on Xt−1 (that is, the transition is memoryless) and is furthermore
independent of t. We view Xt as the “state” of a system at time t. If we have a probability
distribution over the states of the system at time t, represented by a probability vector pt, then the
distribution at time t + 1 is given by P · pt (similar to what we have seen in the previous section).
Similarly, the probability distribution at time t + ` is given by P ` · pt.

A finite Markov chain corresponds in the natural way to a random walk on a (possibly directed
and/or weighted) graph. Focusing on undirected graphs (which is all we will ultimately be interested
in), a random walk on such a graph proceeds as follows: if we are at a vertex v at time t, we move
to a random neighbor of v at time t + 1. If the graph has n vertices, such a random walk defines
the Markov chain given by:

pj,i =
{

k/deg(i) there are k edges between j and i
0 otherwise

.

We continue to allow (multiple) self-loops; each self-loop contributes 1 to the degree of a vertex.
Let p be a probability distribution over the states of the system. We say p is stationary if

P · p = p. We have the following fundamental theorem of random walks on undirected graphs
(which is a corollary of a more general result for Markov chains):

Theorem 1 Let G be an undirected, connected, non-bipartite graph on n vertices, and consider
the transition matrix corresponding to a random walk on G. Then:

1. There is a unique stationary distribution p = (p1, . . . , pn).

15-1

2. Let hi,i denote the expected number of steps for a random walk beginning at vertex i to return
to i. Then hi,i = 1/pi.

In particular, the graph need not be regular.
We do not prove Theorem 1 here. (A proof of the first claim, and intuition for the second claim

can be found in [1, Lecture 8] or dedicated texts on Markov chains, e.g., [2].) Note that for any
undirected graph G, the conditions of the theorem can always be met by (1) restricting attention to
a connected component of G, and (2) adding a self-loop to any vertex in the connected component.

What is the stationary distribution for a given graph? Say we have an undirected, connected,
non-bipartite graph G with m edges and ` self-loops. It can be verified by a simple calculation that
setting pi = deg(i)

2m+` for each vertex i gives a stationary distribution. (For each non-self-loop incident
on vertex i, the probability mass exiting i via that edge is 1

2m+` , which is equal to the probability
mass entering i via that edge.) It follows that, for any vertex i, we have hi,i = 2m+`

deg(i) .
There is another way to view the random walk on G: by looking at the graph G′ on 2m + `

vertices where each vertex in G′ corresponds to an edge plus direction (for non-self-loops) of G,
and there is an edge in G′ between vertices (i, j) and (j′, k′) iff j = j′. The graph G′ is now a
directed graph, but Theorem 1 can be shown to apply here as well.1 Note also that a random
walk in G corresponds exactly to a random walk in G′. In G′, however, the stationary distribution
is the uniform distribution. (This can be verified by calculation, or derived from the stationary
distribution on G.) Thus, for any edge (i, j) in G (which is just a vertex in G′), the expected
number of steps to return to that edge (with direction) after crossing that edge is 1/(2m + `).

Let hi,j denote the expected number of steps to go from vertex i to vertex j. With the above
in hand we can prove the following:

Theorem 2 Consider a random walk on an undirected, connected, non-bipartite graph G with `
self-loops and m (other) edges. If there is an edge in G from vertex i to vertex j then hi,j + hj,i ≤
2m + ` and, in particular, hi,j < 2m + `.

Proof We prove the theorem in two ways. Looking at the random walk in G, we have seen
already that hi,i = 2m+`

deg(i) . If i = j in the theorem then there is a self-loop from i to itself; because
G is connected we must have deg(i) ≥ 2 and so the theorem holds. For i 6= j, we have:

2m + `

deg(j)
= hj,j =

1
deg(j)

·
∑

k∈N(j)

(1 + hk,j) ,

where N(j) are the neighbors of j (the above assumes j has no self-loops or multiple edges, but the
analysis extends to those cases as well). Thus if there is an edge connecting (distinct) vertices i, j
(so i ∈ N(j)), then hi,j < 2m + `. (That hi,j + hj,i ≤ 2m + ` is left as an exercise, but see next.)

Alternately, we may consider the random walk on the graph G′ defined earlier. When we take
a step from vertex i to vertex j in our random walk on G, we view this as being at vertex (i, j)
in the graph G′. We have seen that the stationary distribution in G′ is uniform over the 2m + `
edges (with direction), which means that the expected time to re-visit the edge (i, j) is 2m + `.
But re-visiting edge (i, j) corresponds to a one-step transition from i to j, re-visiting i, and then
following edge (i, j) again. In other words, beginning at j, the expected number of steps to visit i
and then follow edge (i, j) is 2m + `. This gives the desired upper bound on hj,i + hi,j .

1Advanced note: G′ is connected since G is, and is ergodic since G is. Ergodicity is all that is needed for Theorem 1.

15-2

With can now analyze the random-walk algorithm for UConn. Given undirected graph G with
n vertices and |E| edges, and vertices s, t in G, consider the connected component of G containing s.
(Technically, we can imagine adding a self-loop at t to ensure that G is non-bipartite. However, it
is clear that this has no effect on the algorithm.) If t is in the same connected component as s then
there is a path (s = v0, v1, . . . , v` = t) with ` < n; the expected number of steps to go from vi to vi+1

is less than 2|E| + 1. Thus the expected number of steps to go from s = v0 to t = v` is O(n|E|).
Taking a random walk for twice as many steps, we will hit t at some point with probability at
least 1/2.

1.1.2 A Randomized Algorithm for 2SAT

Another easy application of random walks is the following RP algorithm for 2SAT: Begin by
choosing a random assignment for the n variables. Then, while there exists an unsatisfied clause C,
choose one of the variables in C at random and flip its value. Repeat for at most Θ(n2) steps, and
output 1 if a satisfying assignment is ever found.

Let us show that this algorithm finds a satisfying assignment with high probability when one
exists. Fix some satisfying assignment ~x, and let the state of the algorithm be the number of
positions in which the current assignment matches ~x. (So the state i ranges from 0 to n.) When
the algorithm chooses an unsatisfied clause, the value of at least one of the variables in that
clause must differ from the corresponding value of that variable in ~x; thus, the state increases with
probability at least 1/2. The worst case is when the state increases with probability exactly 1/2
(except when i = 0, of course). (We can mentally add a self-loop to state n so the graph is non-
bipartite.) We thus have a random walk on a line, in the worst case starting at i = 0. The expected
number of steps to move from state 0 to state n is h0,1 + · · ·+ hn−1,n ≤ n · (2n + 1) = O(n2).

References

[1] J. Katz. Lecture notes for CMSC 652 — Complexity Theory. Fall 2005.

[2] M. Mitzenmacher and E. Upfal. Probablity and Computing: Randomized Algorithms and Prob-
abilistic Analysis. Cambridge University Press, 2005.

15-3

