
Notes on Complexity Theory Last updated: January, 2022

Lecture 16

Jonathan Katz

1 Interactive Proofs

Let us begin by re-examining our intuitive notion of what it means to “prove” a statement. Tra-
ditional mathematical proofs are static and are verified deterministically : the verifier checks the
claimed proof of a given statement and is either convinced that the statement is true (if the proof
is correct) or remains unconvinced (if the proof is flawed — note that the statement may possibly
still be true in this case, it just means there was something wrong with the proof). A statement is
true (in this traditional setting) iff there exists a valid proof that convinces a legitimate verifier.

Abstracting this process a bit, we may imagine a prover P and a verifier V such that the prover
is trying to convince the verifier of the truth of some particular statement x; more concretely, let
us say that P is trying to convince V that x ∈ L for some fixed language L. We will require the
verifier to run in polynomial time (in |x|), since we would like whatever proofs we come up with to
be efficiently verifiable. A traditional mathematical proof can be cast in this framework by simply
having P send a proof π to V, who then deterministically checks whether π is a valid proof of
x and outputs V(x, π) (with 1 denoting acceptance and 0 rejection). (Note that since V runs in
polynomial time, we may assume that the length of the proof π is also polynomial.) The traditional
mathematical notion of a proof is captured by requiring:

• If x ∈ L, then there exists a proof π such that V(x, π) = 1.

• If x 6∈ L, then no matter what proof π the prover sends we have V(x, π) = 0.

We refer to the above as a type of proof system, a term we will define more formally later. It should
be obvious that L has a proof system of the above sort iff L ∈ NP.

There are two ways the above can be generalized. First, we can allow the verifier to be proba-
bilistic. Assume for a moment that we restrict the prover to sending an empty proof. If the verifier
is deterministic, then a language L has a proof system of this sort only if L ∈ P (as the prover is
no help here). But if the verifier is probabilistic then we can handle any L ∈ BPP (if we allow
two-sided error). If we go back to allowing non-empty proofs, then we already gain something: we
can eliminate the error when x ∈ L. To see this, recall the proof that BPP ∈ Σ2 (lecture 13). The
idea was that if a set S ⊂ {0, 1}ℓ is “small” then for any z1, . . . , zℓ ∈ {0, 1}ℓ, the set

⋃

i(S ⊕ zi) is
still “small.” To make this concrete, say |S| ≤ 2ℓ/4ℓ. Then for any z1, . . . , zℓ we have:

∣

∣

∣

∣

∣

ℓ
⋃

i=1

(S ⊕ zi)

∣

∣

∣

∣

∣

≤ ℓ · |S| ≤ 2ℓ/4. (1)

On the other hand, if S is “large” (specifically, if |S| ≥ (1− 1

4ℓ
) · 2ℓ) then there exist z1, . . . , zℓ such

that
⋃

i(S ⊕ zi) = {0, 1}ℓ.
The above leads to the following proof system for any L ∈ BPP : Let M be a BPP algorithm

deciding L, using a random tape of length ℓ, and having error at most 1/4ℓ (for some polynomial ℓ).

16-1

The prover sends a proof π = (z1, . . . , zℓ) to the verifier (where each zi ∈ {0, 1}ℓ); V then chooses
a random r ∈ {0, 1}ℓ and accepts iff

ℓ
∨

i=1

M(x; r ⊕ zi) = 1.

For common input x, let Sx be the set of random coins for which M(x) = 1. If x ∈ L, then
|Sx| ≥ (1 − 1

4ℓ
) · 2ℓ and so there does indeed exist π = (z1, . . . , zℓ) such that r ∈

⋃

i(Sx ⊕ zi) for
every r ∈ {0, 1}ℓ. Fixing such a π, this means that for every r there exists an index i for which
r ∈ Sx ⊕ zi, and so r⊕ zi ∈ Sx. Thus, if the prover sends this π the verifier will always accept. On
the other hand, if x 6∈ L then |Sx| ≤ 2ℓ/4ℓ and so, using Eq. (1), we have

Pr
r∈{0,1}ℓ

[

r ∈
ℓ
⋃

i=1

(S ⊕ zi)

]

≤ 1/4.

So V accepts in this case with probability at most 1/4.
To summarize, we have shown a proof system for any L ∈ BPP such that:

• If x ∈ L, then there exists a proof π such that Pr[V(x, π) = 1] = 1.

• If x 6∈ L, then no matter what proof π the prover sends we have Pr[V(x, π) = 1] ≤ 1/4.

Thus, assuming P 6= BPP , we see that randomization helps. And assuming coRP 6= BPP ,
allowing communication from the prover to the verifier helps.

We can further generalize proof systems by allowing interaction between the prover and verifier.
(One can think of this as allowing the verifier to ask questions. In this sense, the notion of a proof
becomes more like a lecture than a static proof written in a book.) Note that unless we also allow
randomness, allowing interaction will not buy us anything: if the verifier is deterministic then the
prover can predict all the verifier’s questions in advance, and simply include all the corresponding
answers as part of the (static) proof.

Before we explore the additional power of interaction, we introduce some formal definitions.
For interactive algorithms P,V, let 〈P,V〉 (x) denote the output of V following an interaction of
P with V on common input x.

Definition 1 L ∈ IP if there exist a pair of interactive algorithms (P,V), with V running in
probabilistic polynomial time (in the length of the common input x), such that

1. If x ∈ L, then Pr[〈P,V〉 (x) = 1] = 1.

2. If x 6∈ L, then for any (even cheating) P∗ we have Pr[〈P∗,V〉 (x) = 1] ≤ 1/2.

(We stress that P and P∗ are allowed to be computationally unbounded.) (P,V) satisfying the
above are called a proof system for L. We say L ∈ IP[ℓ] if it has a proof system as above using
ℓ = ℓ(|x|) rounds of interaction (where each message sent by either party counts as a round).

Using this notation, we have seen already that NP ∪ BPP ⊆ IP[1].
Some comments on the definition are in order:

16-2

• One could relax the definition to allow for two-sided error, i.e., error even when x ∈ L.
It is known, however, that this results in an equivalent definition [1] (although the round
complexity increases by a constant). On the other hand, if the definition is “flipped” so that
we allow error only when x ∈ L (and require no error when x 6∈ L) we get a definition that is
equivalent to NP .

• As usual, the error probability of 1/2 is arbitrary, and can be made exponentially small by
repeating the proof system suitably many times. (It is easy to see that sequential repetition
works, and a more detailed proof shows that parallel repetition works also [2, Appendix C].)

• Although the honest prover is allowed to be computationally unbounded, it suffices for it to
be a PSPACE machine. In certain cases it may be possible to have P run in polynomial time
(for example, if L ∈ NP and P is given a proof π as auxiliary information). In general, it
remains an open question as to how powerful P needs to be in order to give a proof for some
particular class of languages.1

1.1 Graph Non-Isomorphism is in IP

It is possible to show that IP ⊆ PSPACE (since, fixing some V and some x, we can compute the
optimal prover strategy in polynomial space). But does interaction buy us anything? Does IP
contain anything more than NP and BPP? We begin by showing the rather surprising result that
graph non-isomorphism is in IP.

If G is an n-vertex graph and π is a permutation on n elements, we let π(G) be the n-vertex
graph in which

(i, j) is an edge in G ⇔ (π(i), π(j)) is an edge in π(G).

Note that G0 is isomorphic to G1 (written G0
∼= G1) iff G0 = π(G1) for some π. (We identify

a graph with its adjacency matrix. So, there is a difference between two graphs being equal [i.e.,
having the same adjacency matrix] and being isomorphic.)

Let G0, G1 be two graphs. The proof system for graph non-isomorphism works as follows:

1. The verifier chooses a random bit b and a random permutation π, and sends G′ = π(Gb).

2. If G′ ∼= G0, the prover replies with 0; if G′ ∼= G1, it replies with 1.

3. The verifier accepts iff the prover replies with V’s original bit b.

Note that if G0 6∼= G1, then it cannot be the case that both of G′ ∼= G0 and G′ ∼= G1 hold; so, the
prover always answers correctly. On the other hand, if G0

∼= G1 (so that (G0, G1) is not in the
language) then the verifier’s bit b is completely hidden to the prover (even though the prover is
all-powerful!); this is because a random permuted copy of G0 is in this case distributed identically
to a random permuted copy of G1. So when G0, G1 are isomorphic, even a cheating prover can
only make the verifier accept with probability 1/2.

1For example, we will soon see that coNP ⊆ IP . By what we have just said, we know that if L ∈ coNP then

there exists a proof system for L with a prover running in PSPACE. But we do not know whether there exists a proof

system for L with a prover running in, say, PcoNP = PNP .

16-3

2 Public-Coin Proof Systems

Crucial to the above protocol for graph non-isomorphism is that the verifier’s coins are private,
i.e., hidden from the prover. At around the same time the class IP was proposed, a related class
was proposed in which the verifier’s coins are required to be public (still, the verifier does not toss
coins until they are needed, so that the prover does not know what coins will be tossed in the
future). These are called Arthur-Merlin proof systems, where Arthur represents the (polynomial-
time) verifier and Merlin the (all-powerful) prover. We again require perfect completeness and
bounded soundness (though see Theorems 1 and 2 below). As in the case of IP one can in general
allow polynomially many rounds of interaction. Although it might appear that Arthur-Merlin
proofs are (strictly) weaker than general interactive proofs, this is not the case [3]. We do not
prove this, but an indication of the general technique will be given in Section ??.

We will consider for now only the Arthur-Merlin classes MA and AM where there are one or
two rounds of interaction. For the class MA Merlin talks first, and then Arthur chooses random
coins and tries to verify the “proof” that Merlin sent. (We have already seen this type of proof
system before when we showed an interactive proof for BPP .) For the class AM Arthur talks
first but is limited to sending its random coins (so the previous proof of graph non-isomorphism
does not satisfy this); then Merlin sends a proof that is supposed to “correspond” to these random
coins, and Arthur verifies it. (Arthur does not choose any additional random coins after receiving
Merlin’s message, although it would not change the class if Arthur did; see Theorem 3, below.)
One can also express these in the following definition, which is just a specialization of the general
definition of Arthur-Merlin proofs to the above cases:

Definition 2 L ∈ MA if there exists a deterministic algorithm V running in polynomial time (in
the length of its first input) such that:

• If x ∈ L then ∃π such that for all r we have V(x, π, r) = 1.

• If x 6∈ L then ∀π we have Prr[V(x, π, r) = 1] ≤ 1/2.

L ∈ AM if there exists a deterministic algorithm V running in polynomial time (in the length of
its first input) such that:

• If x ∈ L then for all r there exists a π such that V(x, r, π) = 1.

• If x 6∈ L then Prr[∃π : V(x, r, π) = 1] ≤ 1/2.

In the case of MA the prover (Merlin) sends π and the verifier (Arthur) then chooses random
coins r, while in the case of AM the verifier (Arthur) sends random coins r and then the prover
(Merlin) responds with π.

MA can be viewed as a randomized version of NP (since a fixed proof is verified using random-
ization) and so a language in MA is sometimes said to have “publishable proofs.” It is clear that
Arthur-Merlin proofs are not more powerful than the class IP (since an Arthur-Merlin proof system
is a particular kind of proof system).

As we have said, MA and AM do not change if we allow error when x ∈ L. We now prove this.
Let MAε and AMε denote the corresponding classes when (bounded) two-sided error is allowed.

Theorem 1 MAε = MA.

16-4

Proof Let L ∈ MAε. Then there is a proof system such that if x ∈ L then there exists a π
(that Merlin can send) for which Arthur will accept with high probability (i.e., V(x, π, r) = 1 with
high probability over choice of r), while if x 6∈ L then for any π Arthur will accept only with low
probability (i.e., V(x, π, r) = 1 with low probability over choice of r). For a given x and π, let Sx,π

denote the set of coins r for which V(x, π, r) = 1. So if x ∈ L there exists a π for which Sx,π is
“large,” while if x 6∈ L then for every π the set Sx,π is “small.” Having Merlin send π along with a
proof that Sx,π is “large” (exactly as in the BPP case) gives the desired result.

Theorem 2 AMε = AM.

Proof Say L ∈ AMε. Using standard error reduction, we thus have a proof system for L in
which Arthur sends a random string r of (polynomial) length ℓ and the error is less than 1/4ℓ. For
a common input x, let Sx denote the set of challenges r (that Arthur can send) for which there
exists a π (that Merlin can send) such that V(x, r, π) = 1. By definition of AMε, if x ∈ L then
|Sx| ≥ (1− 1

4ℓ
) · 2ℓ while if x 6∈ L then |Sx| ≤ 2ℓ/4ℓ. Exactly as in the proof system for BPP shown

previously, this means that we have the following proof system for L:

1. Merlin sends z1, . . . , zℓ ∈ {0, 1}ℓ.

2. Arthur sends random r′ ∈ {0, 1}ℓ.

3. Merlin proves that r′ ∈
⋃

i(Sx ⊕ zi) by finding an i such that r′ ⊕ zi ∈ Sx, setting r = r′ ⊕ zi,
and then computing the appropriate response π to the “challenge” r. So Merlin’s response is
(i, π).

4. Arthur runs V(x, r′ ⊕ zi, π) and outputs the result.

The above has perfect completeness and soundness error at most 1/4 (we do not go through the
analysis since it is the same as in the BPP case).

The problem is that the above is a three-round proof system (notationally, it shows that L ∈
MAM)! But we show below that an “MA” step can be replaced by an “AM” step (while preserving
perfect completeness), and so if we apply that here and then combine Merlin’s last two messages
we get an AMM = AM protocol.

As promised, we now show that MA ⊆ AM. More generally, the proof shows that an “MA”
step can be replaced by an “AM” step.

Theorem 3 MA ⊆ AM.

Proof Say L ∈ MA. Then we have an MA proof system with perfect completeness and sound-
ness error at most 1/2. Say the message π sent by Merlin has length p(|x|) for some polynomial p.
Using error reduction, we can obtain a proof system with perfect completeness and soundness error
at most 1/2p+1; note that the lengths of the messages sent by Merlin do not change (only the
lengths of the random coins r used by Arthur increase). So, when x ∈ L there exists a π (call it
π∗) for which V(x, π∗, r) = 1 for all r chosen by Arthur, while if x 6∈ L then for any π sent by
Merlin the fraction of r for which Arthur accepts is at most 1/2p+1. Now simply flip the order of
messages: first Arthur will choose r and send it to Merlin, and then Merlin replies with a π and
Arthur verifies exactly as before. If x ∈ L then Merlin has no problem, and can simply send π∗. On

16-5

the other hand, if x 6∈ L then what is the probability that there exists a π that will cause Arthur
to accept? Well, for any fixed π the probability that π will work is at most 1/2p+1. Taking a union
bound over all π, we see that the probability that there exists one that works is at most 1/2. We
conclude that L ∈ AM.

As we have said, the same proof shows that an “MA” step can be replaced by an “AM”
step in general. So, AMA = AAM = AM and2 MAM = AMM = AM, and so on. In fact,
the above proof technique shows that any Arthur-Merlin proof system with a constant number of
rounds collapses to exactly AM (except for MA which may be strictly contained in AM). Note
that the proof does not extend to proof systems with an arbitrary (non-constant) number of rounds
since the communication complexity increases by a multiplicative factor each time an “MA” step
is replaced by an “AM” step (and so if we perform this switch too many times, the communication
will no longer be polynomial).

References

[1] M. Furer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Completeness and
Soundness in Interactive Proof Systems. In Advances in Computing Research: A Re-
search Annual, vol. 5 (Randomness and Computation, S. Micali, ed.), 1989. Available at
http://www.wisdom.weizmann.ac.il/~oded/papers.html

[2] O. Goldreich. Modern Cryptography, Probabilistic Proofs, and Pseudorandomness. Springer-
Verlag, 1998.

[3] S. Goldwasser and M. Sipser. Private Coins vs. Public Coins in Interactive Proof Systems.
STOC ’86.

2The theorem shows that AMA ⊆ AAM = AM, but the inclusion AM ⊆ AMA is trivial.

16-6

