
Notes on Complexity Theory Last updated: October, 2011

Lecture 17

Jonathan Katz

1 Graph Non-Isomorphism is in AM

The proof system we showed earlier for graph non-isomorphism relied on the fact that the verifier’s
coins are kept hidden from the prover. Is this inherent? Somewhat surprisingly, we now show a
public-coin proof for graph non-isomorphism. Before doing so, we take a brief detour to discuss
pairwise-independent hash functions (which are useful in many other contexts as well).

1.1 Pairwise-Independent Hash Functions

Fix some domain D and range R. Let H = {hk}k∈K be a family of functions, where each k ∈ K
defines a function hk : D → R. We say that H is1 pairwise independent family if for all distinct
x, x′ ∈ D and all (not necessarily distinct) y, y′ ∈ R we have

Prk←K

[
hk(x) = y

∧
hk(x′) = y′

]
= 1/|R|2 .

Put differently, let D = {x1, . . . , x`} and consider the random variables Yi = hK(xi) (where K is
uniform). If H is pairwise independent then each Yi is uniformly distributed, and moreover the
random variables Y1, . . . , Y` are pairwise independent; i.e., for any i 6= j the random variables Yi

and Yj are independent.
We show a simple construction of a pairwise-independent family for D = R = F, where F is

any finite field. Setting F = GF (2n), and viewing strings of length n as field elements, we obtain
a construction with D = R = {0, 1}n. By truncating the output, we obtain a construction with
D = {0, 1}n and R = {0, 1}` for any n ≥ `. By padding the input with 0s, we obtain a construction
for any ` ≥ n.

Fix D = R = F and let H = {ha,b}a,b∈F where ha,b(x) = ax + b. We claim that H is pairwise
independent. Indeed, fix any distinct x, x′ ∈ F and any y, y′ ∈ F, and consider the probability (over
choice of a, b) that

y = ax + b

y′ = ax′ + b.

Using some basic algebra, we see that the above equations are true iff

a = (y − y′) · (x− x′)−1

b = y − (y − y′) · (x− x′)−1 · x.

(Note that the above rely on the fact that x 6= x′.) Since x, x′, y, y′ are fixed, the right-hand sides
of the above equations are some fixed elements in F; hence, the probability that a, b satisfy both
equations is exactly 1/|F|2 as required.

1Frequently, terminology is abused and hk ∈ H is called a pairwise-independent hash function. Formally, it only
makes sense to speak about pairwise independent families of functions.

17-1

For applications, what we actually need are ways to construct pairwise-independent families
on, say, {0, 1}n for some given n. In that case we actually want an efficient probabilistic algorithm
that, given n, outputs a key k that, in turn, defines a function hk : {0, 1}n → {0, 1}n that is
efficiently computable. The construction given above satisfies this, though it is not entirely trivial
to show this. (In particular, we need to use the fact that we can efficiently generate, and manipulate
elements of, GF (2n).)

1.2 An AM Protocol for Graph Non-Isomorphism

We begin by introducing some more notation. For an n-vertex graph G (represented as an adjacency
matrix), consider the (multi-)set all(G) = {π1(G), . . . , πn!(G)} of all permuted versions of G. This
is indeed a multi-set (in general) since it is possible that πi(G) = πj(G) even when πi 6= πj . For
example, consider the 3-vertex graph G in which there is a single edge (1, 2). Considering the 6
possible permutations on the labels of the vertices, we see that π = (12)(3) maps G to itself, even
though π is not the identity permutation. On the other hand, π′ = (13)(2) maps G to a graph
isomorphic, but not identical, to G.

Let aut(G) = {π | π(G) = G}; these are the automorphisms of G. (Note that aut(G) is never
empty, since the identity permutation is always in aut(G).) Let iso(G) be the set (not multi-set)
{π(G) | π is a permutation}. We claim that for any n-vertex graph G we have:

|aut(G)| · |iso(G)| = n! .

The reason is that our original multi-set all(G) has exactly n! elements in it, but each graph in iso(G)
appears exactly aut(G) times in all(G) (because |aut(G)| = |aut(π(G))| for any permutation π).

We now have the ideas we need to describe the proof system. Given graphs (G0, G1), define the
set W as follows:

W =
{

(H, σ) | H is isomorphic to either G0 or G1

and σ ∈ aut(H)

}
.

Note that if G0
∼= G1, then H is isomorphic to G0 iff it is isomorphic to G1; also, the number of

automorphisms of any such H is exactly |aut(G0)|. So the size of W is exactly |iso(G0)| · |aut(G0)| =
n!. On the other hand, if G0 6∼= G1 then the graphs isomorphic to G0 are distinct from those graphs
isomorphic to G1. So the size of W in this case is

|iso(G0)| · |aut(G0)|+ |iso(G1)| · |aut(G1)| = 2n! .

So, |W ×W | = (n!)2 if G0
∼= G1 and |W ×W | = 4 · (n!)2 if G0 6∼= G1. Furthermore, it is possible to

prove membership in W by giving an isomorphism to either G0 or G1 (the automorphism can be
verified in polynomial time).

The above suggests the following proof system:

1. On common input (G0, G1), define W × W as above. (Arthur obviously cannot construct
W × W , but all it needs to do is compute the upper bound 4(n!)2 on its size.) Let m =
log 4(n!)2, and note that m is polynomial in the input size n.

2. Arthur selects a random h from a pairwise-independent family, where h maps strings of the
appropriate length (which will become obvious in a minute) to {0, 1}m. It sends h to Merlin.

17-2

3. Merlin finds an x ∈ W ×W such that h(x) = 0m (if one exists). It sends this x to Arthur,
along with a proof that x ∈ W ×W .

4. Arthur outputs 1 if x ∈ W ×W and h(x) = 0m.

We now analyze the above. Say (G0, G1) are isomorphic. Then |W ×W | = (n!)2 and so

Prh[∃x ∈ W ×W : h(x) = 0m] ≤
∑

x∈W×W

Prh[h(x) = 0m]

= (n!)2 · 2−m = 1/4,

and so Merlin convinces Arthur only with probability at most 1/4. On the other hand, if G0 6∼= G1

then |W ×W | = 4(n!)2 and we can bound the desired probability as follows:

Prh[∃x ∈ W ×W : h(x) = 0m] ≥
∑

x∈W×W

Prh[h(x) = 0m]

− 1
2
·

∑

x,y∈W×W

x 6=y

Prh[h(x) = 0m ∧ h(y) = 0m]

> 1− 1
2
· (4(n!)2)2 · (2−m)2 = 1/2 ,

using the inclusion-exclusion principle for the first inequality, and relying on pairwise independence
in the second step. (A better bound can be obtained using Chebyshev’s inequality.)

The above does not have perfect completeness, but we have seen before that this can be fixed.

1.3 Evidence that Graph Isomorphism is not NP-Complete

Let GI be the language of graph isomorphism, and GNI be the language of graph non-isomorphism.
In the previous section we showed GNI ∈ AM. This gives evidence that GI is not NP-complete.

Theorem 1 If GI is NP-complete, then the polynomial hierarchy collapses (specifically, PH = Σ2).

Proof We first observe that AM ⊆ Π2 (why?). Now, assume GI is NP-complete. Then GNI is
coNP-complete and hence (since GNI ∈ AM) we have coNP ⊆ AM. We show that this implies
Σ2 ⊆ AM ⊆ Π2 and hence PH = Σ2.

Say L ∈ Σ2. Then by definition of Σ2, there is a language L′ ∈ Π1 = coNP such that: (1) if
x ∈ L then there exists a y such that (x, y) ∈ L′, but (2) if x 6∈ L then for all y we have (x, y) 6∈ L′.
This immediately suggests the following proof system for L:

1. Merlin sends y to Arthur.

2. Arthur and Merlin then run an AM protocol that (x, y) ∈ L′ (this is possible precisely because
L′ ∈ coNP ⊆ AM).

The above is an MAM proof system for L. But, as we have seen, this means there is an AM proof
system for L. Since L ∈ Σ2 was arbitrary this means Σ2 ⊆ AM, completing the proof.

17-3

