
Notes on Complexity Theory Last updated: December, 2011

Lecture 2

Jonathan Katz

1 Review

The running time of a Turing machine M on input x is the number of “steps” M takes before it
halts. Machine M is said to run in time T (·) if for every input x the running time of M(x) is at
most T (|x|). (In particular, this means it halts on all inputs.) The space used by M on input x
is the number of cells written to by M on all its work tapes1 (a cell that is written to multiple
times is only counted once); M is said to use space T (·) if for every input x the space used during
the computation of M(x) is at most T (|x|). We remark that these time and space measures are
worst-case notions; i.e., even if M runs in time T (n) for only a fraction of the inputs of length n
(and uses less time for all other inputs of length n), the running time of M is still T . (Average-case
notions of complexity have also been considered, but are somewhat more difficult to reason about.
We may cover this later in the semester; or see [1, Chap. 18].)

Recall that a Turing machine M computes a function f : {0, 1}∗ → {0, 1}∗ if M(x) = f(x)
for all x. We will focus most of our attention on boolean functions, a context in which it is more
convenient to phrase computation in terms of languages. A language is simply a subset of {0, 1}∗.
There is a natural correspondence between languages and boolean functions: for any boolean
function f we may define the corresponding language L = {x | f(x) = 1}. Conversely, for any
language L we can define the boolean function f by f(x) = 1 iff x ∈ L. A Turing machine M
decides a language L if

x ∈ L ⇒ M(x) = 1
x 6∈ L ⇒ M(x) = 0

(we sometimes also say that M accepts L, though we will try to be careful); this is the same as
computing the boolean function f that corresponds to L. Note in particular that we require M to
halt on all inputs.

What is complexity theory about? The fundamental question of complexity theory is to un-
derstand the inherent complexity of various languages/problems/functions; i.e., what is the most
efficient algorithm (Turing machine) deciding some language? A convenient terminology for dis-
cussing this is given by introducing the notion of a class, which is simply a set of languages. Two
basic classes are:

• time(f(n)) is the set of languages decidable in time O(f(n)). (Formally, L ∈ time(f(n)) if
there is a Turing machine M and a constant c such that (1) M decides L, and (2) M runs in
time c · f ; i.e., for all x (of length at least 1) M(x) halts in at most c · f(|x|) steps.)

• space(f(n)) is the set of languages that can be decided using space O(f(n)).
1Note that we do not count the space used on the input or output tapes; this allows us to meaningfully speak of

sub-linear space machines (with linear- or superlinear-length output).

2-1

Note that we ignore constant factors in the above definitions. This is convenient, and lets us ignore
low-level details about the model of computation.2

Given some language L, then, we may be interested in determining the “smallest” f for which
L ∈ time(f(n)). Or, perhaps we want to show that space(f(n)) is strictly larger than space(f ′(n))
for some functions f, f ′; that is, that there is some language in the former that is not in the latter.
Alternately, we may show that one class contains another. As an example, we start with the
following easy result:

Lemma 1 For any f(n) we have time(f(n)) ⊆ space(f(n)).

Proof This follows from the observation that a machine cannot write on more than a constant
number of cells per move.

2 P, NP, and NP-Completeness

2.1 The Class P
We now introduce one of the most important classes, which we equate (roughly) with problems that
can be solved efficiently. This is the class P, which stands for polynomial time:

P def=
⋃

c≥1

time(nc).

That is, a language L is in P if there exists a Turing machine ML and a polynomial p such that
ML(x) runs in time p(|x|), and ML decides L.

Does P really capture efficient computation? There are debates both ways:

• For many problems nowadays that operate on extremely large inputs (think of Google’s search
algorithms), only linear-time are really desirable. (In fact, one might even want sublinear-time
algorithms, which are only possible by relaxing the notion of correctness.) This is related to
the (less extreme) complaint that an n100 algorithm is not really “efficient” in any sense.

The usual response here is that n100-time algorithms rarely occur. Moreover, when algorithms
with high running times (e.g., n8) do get designed, they tend to be quickly improved to be
more efficient.

• From the other side, one might object that P does not capture all efficiently solvable problems.
In particular, a randomized polynomial-time algorithm (that is correct with high probability)
seems to also offer an efficient way of solving a problem. Most people today would agree
with this objection, and would classify problems solvable by randomized polynomial-time
algorithms as “efficiently solvable”. Nevertheless, it may turn out that such problems all
lie in P anyway; this is currently an unresolved conjecture. (We will discuss the power of
randomization, and the possibility of derandomization, later in the semester.)

As mentioned previously, quantum polynomial-time algorithms may also be considered “effi-
cient”. It is fair to say that until general-purpose quantum computers are implemented, this
is still debatable.

2This decision is also motivated by “speedup theorems” which state that if a language can be decided in time
(resp., space) f(n) then it can be decided in time (resp., space) f(n)/c for any constant c. (This assumes that f(n)
is a “reasonable” function, but the details need not concern us here.)

2-2

Another important feature of P is that it is closed under composition. That is, if an algorithm A
(that otherwise runs in polynomial time) makes polynomially many calls to an algorithm B, and if
B runs in polynomial time, then A runs in polynomial time. See [1] for further discussion.

2.2 The Classes NP and coNP
Another important class of problems are those whose solutions can be verified efficiently. This
is the class NP. (Note: NP does not stand for “non-polynomial time”. Rather, it stands for
“non-deterministic polynomial-time” for reasons that will become clear later.) Formally, L ∈ NP
if there exists a Turing machine ML and a polynomial p such that (1) ML(x,w) runs in time3

p(|x|), and (2) x ∈ L iff there exists a w such that ML(x,w) = 1; such a w is called a witness
(or, sometimes, a proof) that x ∈ L. Compare this to the definition of P: a language L ∈ P if
there exists a Turing machine ML and a polynomial p such that (1) ML(x) runs in time p(|x|), and
(2) x ∈ L iff ML(x) = 1.

Stated informally, a language L is in P if membership in L can be decided efficiently. A language
L is in NP if membership in L can be efficiently verified (given a correct proof). A classic example
is given by the following language:

IndSet =
{

(G, k) :
G is a graph that has

an independent set of size k

}
.

We do not know an efficient algorithm for determining the size of the largest independent set in an
arbitrary graph; hence we do not have any efficient algorithm deciding IndSet. However, if we know
(e.g., through brute force, or because we constructed G with this property) that an independent
set of size k exists in some graph G, it is easy to prove that (G, k) ∈ IndSet by simply listing the
nodes in the independent set: verification just involves checking that every pair of nodes in the
given set is not connected by an edge in G, which is easy to do in polynomial time. Note further
than if G does not have an independent set of size k then there is no proof that could convince us
otherwise (assuming we are using the stated verification algorithm).

It is also useful to keep in mind an analogy with mathematical statements and proofs (though
the correspondence is not rigorously accurate). In this view, P would correspond to the set of
mathematical statements (e.g., “1+1=2”) whose truth can be easily determined. NP, on the other
hand, would correspond to the set of (true) mathematical statements that have “short” proofs
(whether or not such proofs are easy to find).

We have the following simple result, which is the best known as far as relating NP to the time
complexity classes we have introduced thus far:

Theorem 2 P ⊆ NP ⊆ ⋃
c≥1 time(2nc

).

Proof The containment P ⊆ NP is trivial. As for the second containment, say L ∈ NP. Then
there exists a Turing machine ML and a polynomial p such that (1) ML(x,w) runs in time p(|x|),
and (2) x ∈ L iff there exists a w such that ML(x,w) = 1. Since ML(x,w) runs in time p(|x|), it
can read at most the first p(|x|) bits of w and so we may assume that w in condition (2) has length
at most p(|x|). The following is then a deterministic algorithm for deciding L:

3It is essential that the running time of ML be measured in terms of the length of x alone. An alternate approach
is to require the length of w to be at most p(|x|) in condition (2).

2-3

On input x, run ML(x, w) for all strings w ∈ {0, 1}≤p(|x|). If any of these results in
ML(x,w) = 1 then output 1; else output 0.

The algorithm clearly decides L. Its running time on input x is O
(
p(|x|) · 2p(|x|)), and therefore

L ∈ time
(
2nc)

for some constant c.

The “classical” definition of NP is in terms of non-deterministic Turing machines. Briefly, the
model here is the same as that of the Turing machines we defined earlier, except that now there are
two transition functions δ0, δ1, and at each step we imagine that the machine makes an arbitrary
(“non-deterministic”) choice between using δ0 or δ1. (Thus, after n steps the machine can be in
up to 2n possible configurations.) Machine M is said to output 1 on input x if there exists at
least one sequence of choices that would lead to output 1 on that input. (We continue to write
M(x) = 1 in this case, though we stress again that M(x) = 1 when M is a non-deterministic
machine just means that M(x) outputs 1 for some set of non-deterministic choices.) M decides L
if x ∈ L ⇔ M(x) = 1. A non-deterministic machine M runs in time T (n) if for every input x and
every sequence of choices it makes, it halts in time at most T (|x|). The class ntime(f(n)) is then
defined in the natural way: L ∈ ntime(f(n)) if there is a non-deterministic Turing machine ML

such that ML(x) runs in time O(f(|x|)), and ML decides L. Non-deterministic space complexity
is defined similarly: non-deterministic machine M uses space T (n) if for every input x and every
sequence of choices it makes, it halts after writing on at most T (|x|) cells of its work tapes. The
class nspace(f(n)) is then the set of languages L for which there exists a non-deterministic Turing
machine ML such that ML(x) uses space O(f(|x|)), and ML decides L.

The above leads to an equivalent definition of NP paralleling the definition of P:

Claim 3 NP =
⋃

c≥1 ntime(nc).

This is a good exercise; a proof can be found in [1].
The major open question of complexity theory is whether P ?= NP; in fact, this is one of the

outstanding questions in mathematics today. The general belief is that P 6= NP, since it seems
quite “obvious” that non-determinism is stronger than determinism (i.e., verifying should be easier
than solving, in general), and there would be many surprising consequences if P were equal to NP.
(See [1] for a discussion.) But we have had no real progress toward proving this belief.

Conjecture 4 P 6= NP.

A (possibly feasible) open question is to prove that non-determinism is even somewhat stronger
than determinism. It is known that ntime(n) is strictly stronger than time(n) (see [2, 3, 4] and
references therein), but we do not know, e.g., whether time(n3) ⊆ ntime(n2).

2.2.1 The Class coNP
For any class C, we define the class coC as coC def=

{
L | L̄ ∈ C}, where L̄

def= {0, 1}∗ \ L is the
complement of L. Applied to the class NP, we get the class coNP of languages where non-
membership can be efficiently verified. In other words, L ∈ coNP if there exists a Turing machine
ML and a polynomial p such that (1) ML(x, w) runs in time4 p(|x|), and (2) x ∈ L iff for all w we
have ML(x,w) = 1. Note why this (only) implies efficiently verifiable proofs of non-membership:

4See footnote 3.

2-4

a single w where ML(x,w) = 0 is enough to convince someone that x 6∈ L, but a single w where
ML(x,w) = 1 means nothing.

A coNP language is easily obtained by taking the complement of any language in NP. So, for
example, the complement of IndSet is the language

NoIndSet =
{

(G, k) :
G does not have

an independent set of size k

}
.

Let us double-check that this is in coNP: we can prove that (G, k) 6∈ NoIndSet by giving a set of k
vertices that do form an independent set in G (this assumes the obvious verification algorithm); note
that (assuming we use the obvious verification algorithm) we can never be “fooled” into believing
that (G, k) is not in NoIndSet when it actually is.

As another example of languages in NP and coNP, consider the satisfiability problem which
asks whether a boolean formula in conjunctive normal form is satisfiable (see [1] for a formal
definition if you have not encountered these terms before). That is,

SAT = {φ | φ has a satisfying assignment} .

Then SAT consists of boolean formulae with no satisfying assignment. We have SAT ∈ NP and
SAT ∈ coNP. As another example, consider the language TAUT of tautologies:

TAUT = {φ : φ is satisfied by every assignment}.

TAUT is also in coNP.
The class coNP can also be defined in terms of non-deterministic Turing machines. This is left

as an exercise.
Note that P ⊆ NP ∩ coNP. (Why?) Could it be that NP = coNP? Once again, we don’t

know the answer but it would be surprising if this were the case. In particular, there does not seem
to be any way to give an efficiently verifiable proof that, e.g., a boolean formula does not have any
satisfying assignment (which is what would be implied by SAT ∈ NP).

Conjecture 5 NP 6= coNP.

2.3 NP-Completeness

2.3.1 Defining NP-Completeness

What does it mean for one language L′ to be harder5 to decide than another language L? There
are many possible answers to this question, but one way to start is by capturing the intuition that
if L′ is harder than L, then an algorithm for deciding L′ should be useful for deciding L. We can
formalize this idea using the concept of a reduction. Various types of reductions can be defined; we
start with one of the most central:

Definition 1 A language L is Karp reducible (or many-to-one reducible) to a language L′ if there
exists a polynomial-time computable function f such that x ∈ L iff f(x) ∈ L′. We express this by
writing L ≤p L′.

5Technically speaking, I mean “at least as hard as”.

2-5

The existence of a Karp reduction from L to L′ gives us exactly what we were looking for.
Say there is a polynomial-time Turing machine (i.e., algorithm) M ′ deciding L′. Then we get a
polynomial-time algorithm M deciding L by setting M(x) def= M ′(f(x)). (Verify that M does,
indeed, run in polynomial time.) This explains the choice of notation L ≤p L′. We state some basic
properties, all of which are straightforward to prove.

Claim 6 We have:

1. (Transitivity) If A ≤p B and B ≤p C then A ≤p C.

2. If A ≤p B and B ∈ P then A ∈ P.

3. If A ≤p B and B ∈ NP then A ∈ NP.

A problem is NP-hard if it is “at least as hard to solve” as any problem in NP. It is NP-
complete if it is NP-hard and also in NP. Formally:

Definition 2 Language L′ is NP-hard if for every L ∈ NP it holds that L ≤p L′. Language L′ is
NP-complete if L′ ∈ NP and L′ is NP-hard.

Note that if L is NP-hard and L ≤p L′, then L′ is NP-hard as well.
coNP-completeness is defined analogously: a language L′ is coNP-hard if for every L ∈ coNP

it holds that L ≤p L′; language L′ is coNP-complete if L′ is coNP-hard and L′ ∈ coNP.

2.3.2 Existence of NP-Complete Problems

A priori, it is not clear that there should be any NP-complete problems. One of the surprising re-
sults from the early 1970s is that NP-complete problems exist. Soon after, it was shown that many
important problems are, in fact, NP-complete. Somewhat amazingly, we now know thousands of
NP-complete problems arising from various disciplines.

Here is a trivial NP-complete language:

L =
{
(M,x, 1t) : ∃w ∈ {0, 1}t s.t. M(x,w) halts within t steps with output 1.

}
.

Next time we will show more natural NP-complete languages

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

[2] R. Kannan. Towards separating nondeterminisn from determinisn. Math. Systems Theory 17(1):
29–45, 1984.

[3] W. Paul, N. Pippenger, E. Szemeredi, and W. Trotter. On determinism versus non-determinisn
and related problems. FOCS 1983.

[4] R. Santhanam. On separators, segregators, and time versus space. IEEE Conf. Computational
Complexity 2001.

2-6

