
Notes on Complexity Theory Last updated: November, 2011

Lecture 21

Jonathan Katz

1 Probabilistically Checkable Proofs

Work on interactive proof systems motivates further exploration of non-interactive proof systems
(e.g., the class NP). One specific question is: how many bits of the proof does the verifier need to
read? Note that in the usual certificate-based definition of NP, the deterministic “verifier” reads
the entire certificate, and correctness and soundness hold with probability 1. If we allow the verifier
to be probabilistic, and are willing to tolerate non-zero soundness error, is it possible to have the
verifier read fewer bits of the proof? (Turning as usual to the analogy with mathematical proofs,
this would be like probabilistically verifying the proof of a mathematical theorem by reading only
a couple of words of the proof!) Amazingly, we will see that it is possible to have the verifier read
only a constant number of bits while being convinced with high probability.

Abstracting the above ideas, we define the class PCP of probabilistically checkable proofs:

Definition 1 Let r, q be arbitrary functions. We say L ∈ PCP(r(·), q(·)) if there exists a probabilistic
polynomial-time verifier V such that:

• Vπ(x) uses O(r(|x|)) random coins and reads O(q(|x|)) bits of π.1

• If x ∈ L then there exists a π such that Pr[Vπ(x) = 1] = 1.

• If x 6∈ L then for all π we have Pr[Vπ(x) = 1] < 1/2.

Some remarks are in order:

• One can view a probabilistically checkable proof as a form of interactive proof where the
(cheating) prover is restricted to committing to its answers in advance (rather than choosing
them adaptively based on queries in previous rounds). Since the power of the cheating prover
is restricted but the abilities of an honest prover are unaffected, IP ⊆ PCP(poly, poly) def=⋃

c PCP(nc, nc). In particular, PSPACE ⊆ PCP(poly, poly).

• Since V runs in polynomial time (in |x|), the length of i (cf. footnote 1) is polynomial and
so it is only meaningful for the length of π to be at most exponential in |x|. In fact, if the
verifier uses r(n) random coins and makes q(n) queries then we may as well assume that any
proof π for a statement of length n satisfies |π| ≤ 2r(n) · q(n).

• The soundness error can, as usual, be reduced by repetition. The completeness condition
could also be relaxed (as long as there is an inverse polynomial gap between the acceptance
probabilities when x ∈ L and when x 6∈ L). In either case, the parameters r, q may be affected.

1Formally, V has an oracle tape on which it can write an index i and obtain the ith bit of π in the next step.

21-1

• The definition allows V to query π adaptively (i.e., it may read the ith bit, and then based on
this value determine which index j to read next). We will only consider non-adaptive verifiers.
However, any adaptive verifier making a constant number of queries can be converted into a
non-adaptive verifier which makes only a (larger) constant number of queries.

1.1 Toward Understanding the Power of PCP

An easy observation is that PCP(0, poly) = NP. In fact, we have the following stronger result:

Lemma 1 PCP(log, poly) = NP.

Proof Containment of NP in PCP(log, poly) is obvious. For the reverse containment, let L ∈
PCP(log, poly) and let V be the verifier for L. For given x ∈ L, we will show how to construct a
witness for x; the NP-machine deciding L will follow naturally. Note that we cannot simply use
a “good” proof πx (which is guaranteed to exist since x ∈ L) because πx may be exponentially
long. However, we can use a “compressed” version of πx. Specifically, imagine running V for
all possible settings of its O(log n) random coins (here, n = |x|). This results in a set S of only
polynomially many indices at which V potentially reads πx (for each setting of its random coins, V
reads polynomially many indices; there are only 2O(log n) = poly(n) possible settings of V’s random
coins). These queries/answers {(i, πi)}i∈S will be our NP witness w. Our NP algorithm for L is
simple: on input a witness w of the above form, simulate the computation of V (in the natural
way) for all possible settings of its random coins. (If V tries to read an index which is not present
in w, then V immediately rejects.) Accept only if V accepts in all those executions.

In fact, we have the more general result that PCP(r(n), q(n)) ⊆ ntime(2O(r(n)) ·O(q(n))).
At the other extreme, if we allow no queries to π we obtain PCP(poly, 0) = coRP (at least if

we require perfect completeness, as we do in our definition). This, along with the previous result,
shows that we only get something interesting from probabilistically checkable proofs if we consider
the power of randomness and proof queries in tandem.

We have the following deep and important result:

Theorem 2 (The PCP Theorem) NP = PCP(log, 1).

The number of queries can be taken to be a fixed constant which is the same for all languages L ∈
NP (and not, e.g., a constant that depends on the language but not the input length). To see
that this follows from the theorem, note that the theorem implies that SAT has a probabilistically
checkable proof where the verifier uses c log |φ| random coins and reads t bits when verifying the
proof for some 3CNF formula φ. Now, for any L ∈ NP we can construct a probabilistically
checkable proof where the verifier first applies a Karp reduction to the input to obtain a 3CNF
formula φ, and then runs the PCP for SAT on input φ. If the Karp reduction maps n-bit inputs to
nk-bit formulae (for some constant k), then the verifier for L will use ck log |x| random coins and
reads t bits when verifying the proof that some x ∈ L.

The above characterization is tight under the assumption that P 6= NP, in the sense that
P 6= NP is known to imply NP 6⊆ PCP(o(log), o(log)). Also, although not explicit in the theorem,
the PCP theorem also shows how to efficiently convert any witness w for a given x (with respect to
a given NP relation R) into a proof πx for which the corresponding PCP verifier always accepts.

For completeness, we also state the following result (that we will not explore further):

Theorem 3 PCP(poly, poly) = NEXP = PCP(poly, 1).

21-2

2 PCP and Inapproximability

Assuming P 6= NP, we know that we cannot hope to exactly solve all NP-complete (search)
problems in polynomial time. However, we might hope to be able to find an approximate solution
in polynomial time. The PCP theorem can be used to show limits on the best approximations we
can hope to achieve for some specific problems.

2.1 Inapproximability of max-SAT

As an example, we show that there exists some constant α such that it is infeasible to approximate
(in polynomial time) the maximum number of satisfiable clauses in a 3CNF formula to within a
multiplicative factor of α. We begin with some definitions.

Definition 2 For a formula φ and an assignment b to the variables in φ, let SATb(φ) denote the
fraction of clauses satisfied by the given assignment. Let max-SAT(φ) = maxb{SATb(φ)}.
Note that max-SAT(φ) = 1 iff φ is satisfiable. On the other hand, observe that if φ has m clauses
and is unsatisfiable then it could be the case that max-SAT(φ) = 1 − 1/m; in other words, there
is no fixed constant c for which max-SAT(φ) < c iff φ is unsatisfiable. As for a lower bound, it is
not hard to show that for any 3CNF formula φ we have max-SAT(φ) ≥ 7/8. (Proof : A random b
satisfies each clause with probability 7/8, and so satisfies 7/8 of the clauses in expectation. Thus,
there must exist a b that satisfies at least 7/8 of the clauses.)

Definition 3 Let ρ < 1. A value k is a ρ-approximation for φ if

ρ ·max-SAT(φ) ≤ k ≤ max-SAT(φ).

Polynomial-time algorithm A is an ρ(·)-approximation algorithm for 3SAT if A(φ) always outputs a
ρ(|φ|)-approximation for φ.

More generally: for an instance of a maximization problem where the best solution has value v,
a ρ-approximation (ρ < 1) is a value k with ρ · v ≤ k ≤ v. For an instance of a minimization
problem where the best solution has cost c, a ρ-approximation (ρ > 1) is a value k with c ≤ k ≤ ρ ·c.
A polynomial-time algorithm is a ρ-approximation algorithm for some problem if it always outputs
a ρ-approximation to its input instance.

A 1-approximation algorithm for 3SAT would imply that we could solve 3SAT in polynomial time.
By what we have said above, it is trivial to find an 7/8-approximation in polynomial time by always
outputting the answer “7/8.” Can we do better? Toward showing that there is a limit to how well
we can do (assuming P 6= NP), we introduce the notion of an amplifying reduction.

Definition 4 Let c < 1. A c-amplifying reduction of 3SAT is a polynomial-time function f on
3CNF formulae such that:

• If φ is satisfiable, then f(φ) is satisfiable. I.e., if max-SAT(φ) = 1 then max-SAT(f(φ)) = 1.

• If φ is not satisfiable, then every assignment to the variables in f(φ) satisfies at most a
c-fraction of the clauses in f(φ). I.e., if max-SAT(φ) < 1 then max-SAT(f(φ)) < c.

(In particular, an amplifying reduction is a Karp reduction.) We will say that 3SAT has an amplifying
reduction if it has a c-amplifying reduction for some c < 1.

An amplifying reduction for 3SAT implies a hardness-of-approximation result for max-SAT:

21-3

Lemma 4 Assume P 6= NP and that 3SAT has a c-amplifying reduction. Then there is no c-
approximation algorithm for 3SAT.

Proof Assume to the contrary that there is a c-approximation algorithm A for 3SAT. We can
then deterministically solve 3SAT in polynomial time as follows: on input formula φ, run A(f(φ))
to obtain output k. If k ≥ c, output 1; otherwise, output 0. To see correctness of this algorithm,
note that when φ is satisfiable then max-SAT(f(φ)) = 1 and so the output k of A must be at least c.
On the other hand, when φ is not satisfiable then max-SAT(f(φ)) < c and so the output k of A
must satisfy k < c. The claim follows.

In general, say we have a reduction f that maps, e.g., boolean formula to instances of a maxi-
mization (resp., minimization) problem such that

• If φ is satisfiable, then f(φ) has value (resp., cost) α(n), where n denotes the size of f(φ);

• If φ is not satisfiable, then f(φ) has value (resp., cost) strictly less than β(n) < α(n) (resp.,
strictly more than β(n) > α(n)).

Then, assuming P 6= NP, the maximization (resp., minimization) problem has no (β(n)/α(n))-
approximation algorithm.

To establish the connection between the PCP theorem and inapproximability, we show that the
PCP theorem implies the existence of an amplifying reduction for 3SAT. In fact, the implication
goes in both directions, thus showing that one way to prove the PCP theorem is to construct an
amplifying reduction.

Lemma 5 NP ⊆ PCP(log, 1) if and only if 3SAT has an amplifying reduction.

Proof One direction is easy. If 3SAT has an amplifying reduction f , then we can construct the
following PCP system for 3SAT: On input φ, the verifier computes f(φ). The proof will contain
a satisfying assignment for f(φ) (i.e., position i of the proof contains the assignment to xi). To
check the proof, the verifier chooses a random clause in f(φ), queries for the assignments to the
3 variables of that clause, and then verifies that the clause is satisfied for those settings of the
variables. It accepts if and only if that is the case.

If φ is satisfiable then f(φ) is satisfiable and so a valid proof (consisting of a satisfying assignment
for f(φ)) exists. On the other hand, if φ is not satisfiable then at most a c-fraction of the clauses in
f(φ) are satisfiable (for any assignment to the variables), and so the verifier accepts with probability
at most c regardless of the proof. Since c is a constant, repeating the above procedure a constant
number of times (and accepting only if each procedure leads to acceptance) will give the desired
soundness error 1/2 using an overall constant number of queries. Also, the number of random bits
needed to select a random clause is logarithmic in |φ| since |f(φ)| is polynomial in |φ|.

The other direction is the more interesting one. Say SAT ∈ PCP(log, 1), and let V be a verifier
for SAT using c log n random coins (on input φ with |φ| = n) and making t queries. We now describe
an amplifying reduction f . On input a 3CNF formula φ do:

• For each setting r of the random coins for V, do the following:

– Determine the t indices q1, . . . qt that V(φ; r) would when using random coins r (recall
that without loss of generality these indices are chosen non-adaptively).

21-4

– Run V(φ; r) on all possible settings for these bits of the proof to determine when V
accepts in this case. In this way, one may define a CNF formula φ̂r on the variables
xq1 , . . . , xqt such that φ̂r evaluates to true exactly when V(φ; r) would accept. (We
stress that variables of the type xqi are the same for the different settings of r.) The
number of clauses in φ̂r is constant since t is constant. Using auxiliary variables (different
for each r), we may convert φ̂r to an equivalent 3CNF formula φr. The number of clauses
in φr is constant as well.

• Set the output f(φ) to be
∧

r∈{0,1}c log n φr.

Note that the above can be implemented in polynomial time and, in particular, both the number
of clauses and the number of variables in f(φ) are polynomial.2

We claim that f , as given above, is an amplifying reduction. It is not hard to see that if φ is
satisfiable then f(φ) is (this follows from perfect completeness of the PCP system). On the other
hand, assume φ is not satisfiable. Then for any setting of the variables in f(φ), at least half of
the {φr} are not satisfied (this follows from soundness of the PCP system). In each unsatisfied φr

there is at least one unsatisfied clause. Let t′ = O(1) denote the maximum number of clauses in
any of the {φr}. It follows that for any setting of the variables, the fraction of unsatisfied clauses
in f(φ) is at least β = 1/2t′, and so the fraction of satisfied clauses is at most 1− β. This means
that f is a c-amplifying reduction for any c > 1− β.

An alternate way of viewing the above result is in terms of a promise problem where “yes” in-
stances correspond to satisfiable 3CNF formulae, and “no” instances correspond to 3CNF formulae
φ for which max-SAT(φ) < c. The above result implies that this promise problem is NP-hard.

2.2 Inapproximability of Other Problems

Different NP-complete problems may behave differently when it comes to how well they can be
approximated. We discuss some examples here.

2.2.1 Minimum Vertex Cover and Maximum Independent Set

For a given graph G, note that a minimum vertex cover is the complement of a maximum in-
dependent set; thus, with respect to exact solutions, the problems are identical. However, they
behave differently with respect to approximation. (Actually, this should not be too surprising: For
an n-vertex graph with maximum independent set of size I = n − O(1), an independent set of
size ρ · I is a ρ-approximation; however, it gives a vertex cover of size n − ρI which is only an
(n− ρI)/(n− I) = O(n)-approximation and so arbitrarily bad as n gets large.)

Lemma 6 There is a Karp reduction from 3CNF formulae to graphs such that for every 3CNF
formula φ with max-SAT(φ) = v, the graph G = f(φ) has a maximum independent set of size v

7 · n
(where n denotes the number of vertices in G)

The above just uses the standard Karp reduction we have seen in class before. Using our previous
inapproximability result for max-SAT, this immediately implies the following:

2Note that at most 2c log n · t indices are ever potentially queried by V.

21-5

Corollary 7 If P 6= NP then there are constants ρ < 1 and ρ′ > 1 such that there is no ρ-
approximation algorithm for Maximum Independent Set, and no ρ′-approximation algorithm for
Minimum Vertex Cover.

Actually, by reducing directly to the PCP theorem (rather than to 3SAT) we can get a stronger
inapproximability result for Maximum Independent Set:

Theorem 8 There is no 1/2-approximation algorithm for Maximum Independent Set.

Proof Let α(n) = Θ(n) be some function we will fix later. Given an arbitrary NP-complete
language L, we show a transformation f that takes an input x and outputs a graph Gx such that
the following hold:

• If x ∈ L, then Gx = f(x) has a maximum independent set of size α(n) (where n denotes the
number of vertices in Gx).

• If x 6∈ L then Gx = f(x) has a maximum independent set of size at most α(n)/2.

By the PCP theorem, there exists a probabilistically checkable proof system for L with a
polynomial-time verifier V that on input x make t queries to its proof and uses ` = O(log |x|)
coin tosses. Let r1, . . . , rm ∈ {0, 1}` denote the sequence of all possible coin tosses of V (note
m = poly(|x|)), and let qi

1, . . . , q
i
t denote the queries made on random coin tosses ri. (Recall we

assume queries are made non-adaptively.) Let ai
1, . . . , a

i
t be a sequence of possible answers. Define

a graph Gx as follows:

Vertices For each set of random coins ri and each possible set of answers ai
1, . . . , a

i
t, the tuple

(
ri, (qi

1, a
i
1), . . . , (q

i
t, a

i
t)

)

is a vertex if and only if V would accept x when using random coins ri and receiving those
answers to its queries.

Since ri and x uniquely determine the queries, there are at most m · 2t vertices in Gx.

Edges Two vertices v and u have an edge between them if and only if they are not consistent.
(Two vertices are not consistent if they contain different answers to the same query.) Note
that if vertices u, v contain the same random tape ri then they cannot be consistent and so
will share an edge.

Finally, add isolated vertices (if necessary) to obtain a graph with exactly m · 2t vertices.
Define α(n) def= n/2t, so that α(m · 2t) = m. We show that Gx satisfies our desiderata:

• When x ∈ L, there exists a proof π for which V accepts for every setting of its random tape.
This implies the existence of an independent set in Gx of size at least m.

• When x 6∈ L, the existence of an independent set with m/2 (or more) vertices would imply
the existence of a proof that would cause V to accept with probability at least 1/2, in
contradiction to the soundness of the PCP system.

We can further amplify the above results, and show that there is no constant-factor approxi-
mation algorithm for Maximum Independent Set.

21-6

Theorem 9 Assume P 6= NP. Then for every ρ ∈ (0, 1], Maximum Independent Set cannot be
ρ-approximated in polynomial time.

Proof Given a graph G and an integer k, define the graph Gk as follows: vertices of Gk correspond
to subsets of k vertices of G; two vertices S1, S2 of Gk have no edge between them iff S1 ∪ S2 is an
independent set in G. Note that Gk can be generated from G in polynomial time. If G has n vertices,
then Gk has

(
n
k

)
vertices. If G has an independent set S then the vertices in Gk corresponding to

all k-size subsets of S form an independent set in Gk. Conversely, if there is some independent set
S1, . . . , S` of vertices in Gk, then the vertices in ∪iSi form an independent set in G. Thus, if the
maximum independent set in G has size |S| then the maximum independent set in Gk has size

(|S|
k

)
.

Applying the reduction from Lemma 6, followed by the reduction above (using some fixed,
constant value of k), we get a reduction f mapping boolean formulae to graphs, such that if φ is
satisfiable then Gk = f(φ) has a maximum independent set of size

(|S|
k

)
, while if φ is not satisfiable

then Gk has a maximum independent set of size
(ρ·|S|

k

)
for some ρ < 1, where |S| = n/7 (and n is

the number of nodes in the intermediate graph produced by the reduction from Lemma 6). Taking
k sufficiently large, the ratio

(ρ·|S|
k

)
/
(|S|

k

) ≈ ρk can be made arbitrarily small.

21-7

