
Notes on Complexity Theory Last updated: November, 2011

Lecture 23

Jonathan Katz

1 The Complexity of Counting

1.1 The Class #P
P captures problems where we can efficiently find an answer; NP captures problems where we can
efficiently verify an answer. Counting the number of answers gives rise to the class #P.

Recall that L ∈ NP if there is a (deterministic) Turing machine M running in time polynomial
in its first input such that

x ∈ L ⇔ ∃w M(x,w) = 1. (1)

The corresponding counting problem is: given x, determine the number of strings w for which
M(x,w) = 1. (Note that x ∈ L iff this number is greater than 0.) An important point is that for
a given L, there might be several (different) machines for which Eq. (1) holds; when specifying the
counting problem, we need to fix not only L but also a specific machine M . Sometimes, however,
we abuse notation when there is a “canonical” M for some L.

We let #P denote the class of counting problems corresponding to polynomial-time M as
above. The class #P can be defined as a function class or a language class; we will follow the
book and speak about it as a function class. Let M be a (two-input) Turing machine M that
halts on all inputs, and say M runs in time t(n) where n denotes the length of its first input. Let
#M(x) def=

∣∣{w ∈ {0, 1}t(|x|) | M(x,w) = 1
}∣∣. Then:1

Definition 1 A function f : {0, 1}∗ → N is in #P if there is a Turing machine M running in time
polynomial in its first input such that f(x) = #M(x).

We let FP denote the class of functions computable in polynomial time; this corresponds to the
language class P.

Any f ∈ #P defines a natural language L ∈ NP: letting M be the Turing machine for which
f(x) = #M(x), we can define

L = {x | f(x) > 0}.
This view can be used to show that #P is at least as hard as NP. Consider, for example, the
problem #SAT of counting the number of satisfying assignments of a boolean formula. It is easy
to see that #SAT ∈ #P, but #SAT is not in FP unless P = NP (since being able to count the
number of solutions clearly implies the ability to determine existence of a solution). Interestingly,
it is also possible for a counting problem to be hard even when the corresponding decision problem
is easy. (Actually, it is trivial to come up with “cooked up” examples where this is true. What is

1For completeness, we also discuss how #P can be defined as a language class. For the purposes of this footnote
only, let #FP denote the function class (as defined above). Then language class #P can be defined as: L ∈ #P if
there is a Turing machine M running in time polynomial in its first input such that L = {(x, k) | #M(x) ≤ k}. We
use inequality rather than equality in this definition to ensure that #P = P#FP and #FP = FP#P .

23-1

interesting is that there are many natural examples.) For example, let #cycle be the problem of
counting the number of cycles in a directed graph. Note that #cycle ∈ #P, and the corresponding
decision problem is in P. But:

Claim 1 If P 6= NP, then #cycle 6∈ FP.

Proof (Sketch) If #cycle ∈ FP then we can detect the existence of Hamiltonian cycles in
polynomial time. (Deciding Hamiltonicity is a classic NP-complete problem.) Given a graph G,
form a new graph G′ by replacing each edge (u, v) with a “gadget” that introduces 2n log n paths
from u to v. If G has a Hamiltonian cycle, then G′ has at least

(
2n log n

)n = nn2
cycles; if G does

not have a Hamiltonian cycle then its longest cycle has length at most n − 1, and it has at most
nn−1 cycles; thus, G′ has at most

(
2n log n

)n−1 · nn−1 < nn2
cycles.

There are two approaches, both frequently encountered, that can be used to define (different
notions of) #P-completeness. We say a function g ∈ #P is #P-complete under parsimonious
reductions if for every f ∈ #P there is a polynomial-time computable function φ such that f(x) =
g(φ(x)) for all x. (A more general, but less standard, definition would allow for two polynomial-
time computable functions φ, φ′ such that f(x) = φ′(g(φ(x))).) This is roughly analogous to a Karp
reduction. An alternative definition is that g ∈ #P is #P-complete under oracle reductions if for
every f ∈ #P there is a polynomial-time Turing machine M such that f is computable by Mg. (In
other words, #P ⊆ FPg.) This is analogous to a Cook reduction.

Given some g ∈ #P, denote by Lg the NP-language corresponding to g (see above). It is
not hard to see that if g is #P-complete under parsimonious reductions then Lg is NP-complete.
As for the converse, although no general result is known, one can observe that most Karp re-
ductions are parsimonious; in particular, #SAT is #P-complete under parsimonious reductions.
#P-completeness under oracle reductions is a much more liberal definition; as we will see in the
next section, it is possible for g to be #P-complete under Cook reductions even when Lg ∈ P.

1.2 #P-Completeness of Computing the Permanent

Let A = {ai,j} be an n× n matrix over the integers. The permanent of A is defined as:

perm(A) def=
∑

π∈Sn

n∏

i=1

ai,π(i) ,

where Sn is the set of all permutations on n elements. This formula is very similar to the formula
defining the determinant of a matrix; the difference is that in the case of the determinant there is an
extra factor of (−1)sign(π). Nevertheless, although the determinant can be computed in polynomial
time, computing the permanent (even of boolean matrices) is #P-complete.

We should say a word about why computing the permanent is in #P (since it does not seem
to directly correspond to a counting problem). The reason is that computing the permanent is
equivalent to (at least) two other problems on graphs. For the case when A is a boolean matrix,
we may associate A with a bipartite graph GA having n vertices in each component, where there
is an edge from vertex i (in the left component) to vertex j (in the right component) iff ai,j = 1.
Then perm(A) is equal to the number of perfect matchings in GA. For the case of a general integer
matrices, we may associate any such matrix A with an n-vertex weighted, directed graph GA

(allowing self-loops) by viewing A as a standard adjacency matrix. A cycle cover in GA is a set

23-2

of edges such that each vertex has exactly one incoming and outgoing edge in this set. (Any cycle
cover corresponds to a permutation π on [n] such that (i, π(i)) is an edge for all i.) The weight of
a cycle cover is the product of the weight of the edges it contains. Then perm(A) is equal to the
sum of the weights of the cycle covers of GA. (For boolean matrices, perm(A) is just the number
of cycle covers of GA.)

Determining existence of a perfect matching, or of a cycle cover, can be done in polynomial
time; it is counting the number of solutions that is hard:

Theorem 2 Permanent for boolean matrices is #P-complete under oracle reductions.

The proof is quite involved and so we skip it; a full proof can be found in [1, Section 17.3.1].

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

23-3

