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1 Space-Bounded Derandomization

We now discuss derandomization of space-bounded algorithms. Here non-trivial results can be
shown without making any unproven assumptions, in contrast to what is currently known for de-
randomizing time-bounded algorithms. We show first that BPL ⊆ space(log2 n) and then improve
the analysis and show that1 BPL ⊆ TimeSpc(poly(n), log2 n) ⊆ SC. (Note: we already know

RL ⊆ NL ⊆ space(log2 n)

but this does not by itself imply BPL ⊆ space(log2 n).)
With regard to the first result, we actually prove something more general:

Theorem 1 Any randomized algorithm (with two-sided error) that uses space S = Ω(log n) and R
random bits can be converted to one that uses space O(S log R) and O(S log R) random bits.

Since any algorithm using space S uses time at most 2S (by our convention regarding probabilistic
machines) and hence at most this many random bits, the following is an immediate corollary:

Corollary 2 For S = Ω(log n) it holds that bpspace(S) ⊆ space(S2).

Proof Let L ∈ bpspace(S). Theorem 1 shows that L can be decided by a probabilistic machine
with two-sided error using O(S2) space and O(S2) random bits. Enumerating over all random bits
and taking majority, we obtain a deterministic algorithm that uses O(S2) space.

2 BPL ⊆ space(log2 n)

We now prove Theorem 1. Let M be a probabilistic machine running in space S (and time 2S),
using R ≤ 2S random bits, and deciding a language L with two-sided error. (Note that S, R are
functions of the input length n, and the theorem requires S = Ω(log n).) We will assume without
loss of generality that M always uses exactly R random bits on all inputs; recall also that M has
read-once access to its random bits. Fixing an input x and letting ` be some parameter, we will
view the computation of Mx as a random walk on a multi-graph in the following way: our graph
will have R/` + 1 layers, with each layer containing N

def= 2O(S) nodes that correspond to possible
configurations of Mx. There is an edge from node a (in some layer i) to node b (in some layer i+1)
labeled by the string r ∈ {0, 1}` iff Mx moves from configuration a to configuration b after reading
r as its next ` random bits. Computation of M(x) is then equivalent to a random walk of length
R/` on this graph, beginning from the node corresponding to the initial configuration of Mx (in

1SC captures computation that simultaneously uses polynomial time and polylogarithmic space.
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layer 0). If x ∈ L then the probability that this random walk ends up in the accepting state is at
least 2/3, while if x 6∈ L then the probability that this random walk ends up in the accepting state
is at most 1/3.

It will be convenient to represent this process using an N ×N transition matrix Qx, where the
entry in column i, row j is the probability that Mx moves from configuration i to configuration j
after reading ` random bits. Vectors of length N whose entries are non-negative and sum to 1
correspond to probability distributions over the configurations of Mx in the natural way. If we let s
denote the probability distribution that places probability 1 on the initial configuration of Mx (and
0 elsewhere), then Q

R/`
x · s corresponds to the probability distribution over the final configuration

of Mx; thus, if we let i denote the accepting configuration of Mx:

x ∈ L ⇒
(
QR/`

x · s
)

i
≥ 3/4

x 6∈ L ⇒
(
QR/`

x · s
)

i
≤ 1/4.

The statistical difference between two vectors/probability distributions s, s′ is

SD(s, s′) def=
1
2
· ∥∥s− s′

∥∥
1

=
1
2
·
∑

i

|si − s′i|.

If Q,Q′ are two transition matrices — meaning that all entries are non-negative, and the entries in
each column sum to 1 — then we abuse notation and define

SD(Q,Q′) def= maxs{SD(Qs, Q′s)},

where the maximum is taken over all s that correspond to probability distributions. Note that if
Q,Q′ are N ×N transition matrices and maxi,j{|Qi,j −Q′

i,j |} ≤ ε, then SD(Q,Q′) ≤ Nε/2.

2.1 A Useful Lemma

The pseudorandom generator we construct will use a family H of pairwise-independent functions
as a building block. It is easy to construct such a family H whose functions map `-bit strings to
`-bit strings and such that (1) |H| = 22` (and so choosing a random member of H is equivalent to
choosing a random 2`-bit string) and (2) functions in H can be evaluated in O(`) space.

For S ⊆ {0, 1}`, define ρ(S) def= |S|/2`. We define a useful property and then show that a
function chosen from a pairwise-independent family satisfies the property with high probability.

Definition 1 Let A, B ⊆ {0, 1}`, h : {0, 1}` → {0, 1}`, and ε > 0. We say h is (ε,A, B)-good if:
∣∣∣∣ Pr
x∈{0,1}`

[
x ∈ A

∧
h(x) ∈ B

]
− Pr

x,y∈{0,1}`

[
x ∈ A

∧
y ∈ B

]∣∣∣∣ ≤ ε.

Lemma 3 Let A,B ⊆ {0, 1}`, H be a family of pairwise-independent functions, and ε > 0. Then:

Pr
h∈H

[h is not (ε,A, B)-good] ≤ ρ(A)ρ(B)
2`ε2

.

27-2



Proof The proof is fairly straightforward. We want to bound the fraction of functions in H for
which

∣∣∣Prx∈{0,1}` [x ∈ A
∧

h(x) ∈ B]− ρ(A) · ρ(B)
∣∣∣ > ε or, equivalently,

∣∣∣∣ Pr
x∈A

[h(x) ∈ B]− ρ(B)
∣∣∣∣ > ε/ρ(A).

For fixed x, let δh(x)∈B be an indicator random variable (over random choice of h ∈ H) that is 1 iff
h(x) ∈ B. Then we are interested in the fraction of h ∈ H for which

∣∣∣∣∣
∑

x∈A

δh(x)∈B − |A| · ρ(B)

∣∣∣∣∣ > ε · |A|/ρ(A).

Using Chebyshev’s inequality and pairwise independence of H, we obtain

Pr
h∈H

[ ∣∣∣∣∣
∑

x∈A

δh(x)∈B − |A| · ρ(B)

∣∣∣∣∣ > ε · |A|/ρ(A)

]
≤ |A| · ρ(B) · ρ(A)2

ε2|A|2 =
ρ(A)ρ(B)

2`ε2
.

2.2 The Pseudorandom Generator and Its Analysis

2.2.1 The Basic Step

We first show how to reduce the number of random bits by roughly half. Let H denote a pairwise-
independent family of functions, and fix an input x. Let Q denote the transition matrix corre-
sponding to transitions in Mx after reading ` random bits; that is, the (j, i)th entry of Q is the
probability that Mx, starting in configuration i, moves to configuration j after reading ` random
bits. So Q2 is a transition matrix denoting the probability that Mx, starting in configuration i,
moves to configuration j after reading 2` random bits. Fixing h ∈ H, let Qh be a transition matrix
where the (j, i)th entry in Qh is the probability that Mx, starting in configuration i, moves to
configuration j after reading the 2` “random bits” r‖h(r) (where r ∈ {0, 1}` is chosen uniformly
at random). Put differently, Q2 corresponds to taking two uniform and independent steps of a
random walk, whereas Qh corresponds to taking two steps of a random walk where the first step
(given by r) is random and the second step (namely, h(r)) is a deterministic function of the first.
We now show that these two transition matrices are “very close”. Specifically:

Definition 2 Let Q, Qh, ` be as defined above, and ε ≥ 0. We say h ∈ H is ε-good for Q if

SD(Qh, Q2) ≤ ε/2 .

Lemma 4 Let H be a pairwise-independent function family, and let Q be an N × N transition
matrix where transitions correspond to reading ` random bits. For any ε > 0 we have:

Pr
h∈H

[h is not ε-good for Q] ≤ N6

ε22`
.

27-3



Proof For i, j ∈ [N ] (corresponding to configurations in Mx), define

Bi,j
def= {r ∈ {0, 1}` | r defines a transition from i to j}.

For any fixed i, j, k, we know from Lemma 3 that the probability that h is not (ε/N2, Bi,j , Bj,k)-good
is at most N4ρ(Bi,j)ρ(Bj,k)/ε22` ≤ N4ρ(Bi,j)/ε22`. Applying a union bound over all N3 triples
i, j, k ∈ [N ], and noting that for any i we have

∑
j ρ(Bi,j) = 1, we have that h is (ε/N2, Bi,j , Bj,k)-

good for all i, j, k except with probability at most N6/ε22`.
We show that whenever h is (ε/N2, Bi,j , Bj,k)-good for all i, j, k, then h is ε-good for Q. Consider

the (k, i)th entry in Qh; this is given by:
∑

j∈[N ] Prr∈{0,1}` [r ∈ Bi,j ∧ h(r) ∈ Bj,k]. On the other
hand, the (k, i)th entry in Q2 is:

∑
j∈[N ] ρ(Bi,j) ·ρ(Bj,k). Since h is (ε/N2, Bi,j , Bj,k)-good for every

i, j, k, the absolute value of their difference is
∣∣∣∣∣∣
∑

j∈[N ]

(
Pr[r ∈ Bi,j ∧ h(r) ∈ Bj,k]− ρ(Bi,j) · ρ(Bj,k)

)
∣∣∣∣∣∣

≤
∑

j∈[N ]

∣∣∣ Pr[r ∈ Bi,j ∧ h(r) ∈ Bj,k]− ρ(Bi,j) · ρ(Bj,k)
∣∣∣

≤
∑

j∈[N ]

ε/N2 = ε/N.

It follows that SD(Qh, Q2) ≤ ε/2 as desired.

The lemma above gives us a pseudorandom generator that reduces the required randomness by
(roughly) half. Specifically, define a pseudorandom generator G1 : {0, 1}2`+R/2 → {0, 1}R via:

G1(h; r1, . . . , rR/2`) = r1 ‖h(r1) ‖ · · · ‖ rR/2` ‖h(rR/2`), (1)

where h ∈ H (so |h| = 2`) and ri ∈ {0, 1}`. Assume h is ε-good for Q. Running Mx using the
output of G1(h; · · ·) as the “random tape” generates the probability distribution

R/2`︷ ︸︸ ︷
Qh · · ·Qh ·s

for the final configuration, where s denotes the initial configuration of Mx (i.e., s is the probability
distribution that places probability 1 on the initial configuration of Mx, and 0 elsewhere). Running
Mx on a truly random tape generates the probability distribution

R/2`︷ ︸︸ ︷
Q2 · · ·Q2 ·s

for the final configuration. Since SD(Qh, Q2) ≤ ε/2, we have

SD(

R/2`︷ ︸︸ ︷
Qh · · ·Qh ·s,

R/2`︷ ︸︸ ︷
Q2 · · ·Q2 ·s) ≤ R

2`
· ε

2
.

27-4



This means that the behavior of Mx when run using the output of the pseudorandom generator is
very close to the behavior of Mx when run using a truly random tape: in particular, if x 6∈ L then
Mx in the former case accepts with probability at most

Pr[accepts ∧ h is ε-good for Q] + Pr[h is not ε-good for Q] ≤ (
1/4 + Rε/4`

)
+ N6/ε22`;

similarly, if x ∈ L then Mx in the former case accepts with probability at least 3/4−Rε/4`−N6/ε22`.
Summarizing (and slightly generalizing):

Corollary 5 Let H be a pairwise-independent function family, let Q be an N×N transition matrix
where transitions correspond to reading ` random bits, let k > 0 be an integer, and let ε > 0. Then
except with probability at most N6/ε22` over choice of h ∈ H we have:

SD
( k︷ ︸︸ ︷

Qh · · ·Qh,

k︷ ︸︸ ︷
Q2 · · ·Q2

)
≤ kε/2.

2.2.2 Recursing

Fixing h1 ∈ H, note that Qh1 is a transition matrix and so we can apply Corollary 5 to it as
well. Moreover, if Q uses R random bits then Qh1 uses R/2 random bits (treating h1 as fixed).

Continuing in this way for I
def= O(log(R/`)) iterations, we obtain a transition matrix Qh1,...,hI

. Say
all hi are ε-good if h1 is ε-good for Q, and for each i > 1 it holds that hi is ε-good for Qh1,...,hi−1

.
By Corollary 5 we have:

• All hi are ε-good except with probability at most N6I/ε22`.

• If all hi are ε-good then

SD(Qh1,...,hI
,

R/2`︷ ︸︸ ︷
Q2 · · ·Q2) ≤ ε

2
·

I∑

i=1

R

2i`
= O(εR/`).

Equivalently, we obtain a pseudorandom generator

GI(h1, . . . , hI ; r)
def= GI−1(h1, . . . , hI−1; r) ‖GI−1(h1, . . . , hI−1; hI(r)),

where G1 is as in Equation (1).

2.2.3 Putting it All Together

We now easily obtain the desired derandomization. Recall N = 2O(s). Set ε = 2−S/10, and set
` = Θ(S) so that N6S

ε22` ≤ 1/20. Then the number of random bits used (as input to GI from the
previous section) is O(` · log(R/`) + `) = O(S log R) and the space used is bounded by that as
well (using the fact that each h ∈ H can be evaluated using space O(`) = O(S)). All hi are good
except with probability at most N6 log(R/`)/ε22` ≤ N6S/ε22` ≤ 1/20; assuming all hi are good,
the statistical difference between an execution of the original algorithm and the algorithm run with
a pseudorandom tape is bounded by 2−S/20 ·R ≤ 1/20. Theorem 1 follows easily.
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2.3 BPL ⊆ SC
A deterministic algorithm using space O(log2 n) might potentially run for 2O(log2 n) steps; in fact,
as described, the algorithm from the proof of Corollary 2 uses this much time. For the particular
pseudorandom generator we have described, however, it is possible to do better. The key observation
is that instead of just choosing the h1, . . . , hI at random and simply hoping that they are all ε-good,
we will instead deterministically search for h1, . . . , hI which are each ε-good. This can be done in
polynomial time (when S = O(log n)) because: (1) for a given transition matrix Qh1,...,hi−1 and
candidate hi, it is possible to determine in polynomial time and polylogarithmic space whether hi is
ε-good for Qh1,...,hi−1 (this relies on the fact that the number of configurations N is polynomial in n);
(2) there are only a polynomial number of possibilities for each hi (since ` = Θ(S) = O(log n)).

Once we have found the good {hi}, we then cycle through all possible choices of the seed
r ∈ {0, 1}` and take majority (as before). Since there are a polynomial number of possible seeds
(again using the fact that ` = Θ(S) = O(log n)), the algorithm as a whole runs in polynomial time.

(For completeness, we discuss the case of general S = Ω(log n) assuming R = 2S . Checking
whether a particular hi is ε-good requires time 2O(S). There are 2O(S) functions to search through
at each stage, and O(S) stages altogether. Finally, once we obtain the good {hi} we must then
enumerate through 2O(S) seeds. The end result is that bpspace(S) ⊆ TimeSpc(2O(S), S2).)

3 Applications to Error Reduction

Interestingly, the same pseudorandom generator we have constructed can also be used for efficient
error reduction. Before discussing this application, we briefly discuss error reduction in general.
(For simplicity, we focus here on the case of error reduction for randomized algorithms with one-
sided error; all results described here can be generalized for the case of two-sided error.)

For concreteness, say we have an algorithm A for some language L such that

x ∈ L ⇒ Pr[A(x) = 1] ≥ 1/2
x 6∈ L ⇒ Pr[A(x) = 1] = 0.

Say A uses ` random bits. (The time/space complexity of A is not relevant to this discussion.) A
näıve approach to error reduction would be to run A on a given input k times using independent
random tapes r1, . . . , rk, outputting 1 iff any of these runs returns 1. This uses k · ` random bits,
requires running A for k times, and achieves error 2−k.

A different approach (due to Chor-Goldreich) is to let the {ri} be pairwise independent rather
than completely independent. That is, choose random h ∈ H and set ri = h(i) ∈ {0, 1}`; then run
A for k times using the random coins r1, . . . , rk. This uses O(`) random bits (the only randomness
is the choice of h) and k executions of A as before, but only achieves error O(1/k). (The proof
follows directly from Chebyshev’s inequality.)

A better approach uses (a small modification of) the pseudorandom generator from the previous
section. Define G1(h1; r) = r ‖h1(r) and, inductively,

GI(h1, . . . , hI ; r)
def= GI−1(h1, . . . , hI−1; r) ‖GI−1(h1, . . . , hI−1; hI(r)).

(The difference from before is that now the output length of GI grows; specifically, the output

length of GI is
({0, 1}`

)2I

.) Our algorithm will now be to run A on each of the k
def= 2I strings
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output by GI ; we output 1, as before, iff A outputs 1 in one of those executions. Now we use
O(` · log k) random bits (and k executions of A); the error is given by the following theorem.

Theorem 6 If x ∈ L, the probability that A always outputs 0 when run on the k = 2I random
strings output by GI is at most 2−k + (log k + 2) · 2−`/3.

Proof Setting ε = 2−`/3, Lemma 3 shows that for any A, B ⊆ {0, 1}` we have

Pr
h∈H

[h is not (ε,A, B)-good] ≤ ε .

Thus, all hi are (ε,A, B)-good (for any A,B) except with probability at most ε · log k.
Assuming all hi are (ε,A, B)-good, we prove by induction on I that the probability (over choice

of r ∈ {0, 1}`) that A always outputs 0 when run on the output of GI(h1, . . . , hI ; r) is at most
2−2I

+ 2ε. For I = 0 this is immediate. We prove it holds for I, assuming it holds for I − 1.
Let

A = B = {r | A always outputs 0 when run on the output of GI−1(h1, . . . , hI−1; r)}.

By our inductive step, ρ(A) = ρ(B) ≤ 2−2I−1
+ 2ε. Furthermore, the probability that A always

outputs 0 when run on the output of GI(h1, . . . , hI ; r) is exactly the probability that r ∈ A and
hI(r) ∈ B. Since hI is (ε,A, B)-good we have

Pr
r∈{0,1}`

[r ∈ A
∧

hI(r) ∈ B] ≤ Pr
r,r′∈{0,1}`

[r ∈ A
∧

r′ ∈ B] + ε

≤
(
2−2I−1

+ 2ε
)2

+ ε

≤ 2−2I
+ 2ε.

This completes the proof.

Bibliographic Notes

The results of Section 2 are due to [3, 4], both of which are very readable. See also [1, Lecture 16] for
a slightly different presentation. Section 3 is adapted from the Luby-Wigderson survey on pairwise
independence [2].
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