
Notes on Complexity Theory Last updated: October, 2011

Lecture 3

Jonathan Katz

1 Natural NP-Complete Problems

Last time we saw a “non-natural” NP-complete language. Other important NP-complete lan-
guages are SAT (satisfiable boolean formulae in conjunctive normal form) and 3-SAT (satisfiable
boolean formulae in conjunctive normal form, where each clause contains at most 3 literals). Besides
being more “natural” languages, they are useful for proving NP-completeness of other languages.

Theorem 1 (Cook-Levin Theorem) SAT is NP-complete.

Proof We give a detailed proof sketch. (Note that the proof we give here is different from the
one in [1]; in particular, we do not rely on the existence of oblivious Turing machines.)

Let L be a language in NP. This means there is a Turing machine M and a polynomial
p such that (1) M(x,w) runs in time p(|x|), and (2) x ∈ L if and only if there exists a w for
which M(x,w) = 1. Note that we may assume that any such w, if it exists, has length exactly
p(|x|)− |x| − 1. We also assume for simplicity (and without loss of generality) that M has a single
tape (that is used as both its input tape and work tape) and a binary alphabet.

A simple observation is that we can represent the computation of M(x,w) (where |x| = n) by a
tableau of p(n) + 1 rows, each O(p(n)) bits long. Each row corresponds to the entire configuration
of M at some step during its computation; there are p(n) + 1 rows since M always halts after at
most p(n) steps. (If M(x,w) halts before p(n) steps, the last rows may be duplicates of each other.
Or we may assume that M(x,w) always runs for exactly p(|x|) steps.) Each row can be represented
using O(p(n)) bits since a configuration contains (1) the contents of M ’s tape (which can be stored
in O(p(n)) bits — recall that space(p(n)) ⊆ time(p(n))); (2) the location of M ’s head on its tape
(which can be stored in p(n) bits1); and (3) the value of M ’s state (which requires O(1) bits).

Moreover, given a tableau that is claimed to correspond to an accepting computation of M(x,w),
it is possible to verify this via a series of “local” checks. (This notion will become more clear below.)
Specifically, letting p = p(n) and assuming we are given some tableau, do:

1. Check that the first row is formed correctly. (The tape should contain x, followed by a space
and then a sequence of bits representing w; M ’s head should be in the left-most position; and
M should be in its start state.)

2. Number the rows from 0 to T , and recall that these correspond to time steps of M ’s execution.
Let ti,j denote the value written in cell j at time i. Then for i = 1, . . . , T and j = 1, . . . , T ,
check that ti,j has the correct value given ti−1,j−1, ti−1,j , and ti−1,j+1 and the value of the
state at time i − 1. We also need to check that the state at time i takes the correct value;
this is discussed in detail below.

3. Check that the state in the final row is the accepting state.
1In fact, O(log p(n)) bits suffice, but for this proof it is somewhat simpler to use a more wasteful representation.

3-1

Each of these checks involves looking at only a small (in fact, constant) part of the tableau. This is
important, as it implies that each check can be represented as a constant-size CNF formula. Then
correctness of the entire tableau can be represented as a conjunction of a polynomial number of
these formulae. We give further details below.

We begin with the following claim:

Claim 2 Any function f : {0, 1}` → {0, 1} can be expressed as a CNF formula of size at most ` ·2`.

Proof Let x = (x1, . . . , x`) denote the input variables of f . For some fixed string y ∈ {0, 1}`, we
can express the predicate “neqy(x) def= [x 6= y]” as

(x1 6= y1) ∨ · · · ∨ (x` 6= y`);

remembering that y is fixed, this is just a disjunctive clause in the ` variables x1, . . . , x`. If we let
Y ⊆ {0, 1}` denote the set of inputs on which f evaluates to 0, then we can express the predicate
“f(x) = 1” by ∧

y∈Y neqy(x1, . . . , x`),

which is a CNF formula of size at most ` · 2`.

To prove the theorem, we need to show a polynomial-time transformation f that outputs CNF
formula with the property that x ∈ L iff f(x) ∈ SAT. Our transformation f will output a CNF
formula corresponding to the verification of an accepting tableau of the computation of M(x,w)
for some w. For a given x of length n = |x|, let p = p(n); then f(x) does as follows:

• Create variables {ti,j} for i = 0 to p and j = 1 to p. Each ti,j represents the value written in
cell j at time i. (Each ti,j will actually be two bits, since we need two bits to represent the 0,
1, start symbol, and space character.)

• Create variables ui,j for i = 0 to p and j = 1 to p. Each ui,j is a single bit indicating whether
the head is in position j at time i.

• Create variables ~si
def= (si,1, . . . , si,q) for i = 1 to p and some constant q that depends on the

number of states that M uses. (Namely, if the set of states is Q then q = dlog |Q|e.)
• Create the following CNF formulae:

– χ0 checks that row 0 is correct: namely, that t0,1, . . . , t0,p contains a start symbol,
followed by x1, . . . , x`, followed by a blank, and then {0, 1} in the remaining positions;
furthermore, u0,1 = 1 and u0,j = 0 for all j > 1, and ~s0 encodes the start state of M .
Even though χ0 involves O(p) variables, it is easy to see that it can be expressed as a
CNF formula of size O(p).

– For i, j = 1 to p, let φi,j be a CNF formula that checks correctness of cell j at time i.
This is a formula in the variables ti,j , ui,j , the three2 cells in the neighborhood of

cell j at the previous time period (namely, Ni−1,j
def= {ti−1,j−1, ui−1,j−1, ti−1,j , ui−1,j ,

ti−1,j+1, ui−1,j+1}), and the current and previous states ~si, ~si−1. This formula encodes
the following predicate:

2Of course, if j = 1 or j = p then the cell has only two neighbors.

3-2

ti,j , ui,j contain the correct values given Ni−1,j and ~si−1.
and

if ui,j = 1, then ~si contains the correct value given Ni−1,j and ~si−1.

The above can be a complicated predicate, but it involves only a constant (i.e., independent
of n) number of variables, and hence (by Claim 2) can be encoded by a CNF formula of
constant size.

• χp simply checks that ~sp encodes the accepting state of M .

• The output of f is Φ = χ0 ∧
(∧

i,j φi,j

)
∧ χp.

One can, somewhat tediously, convince oneself that Φ is satisfiable if and only if there is some
w for which M(x,w) = 1.

To show that 3-SAT is NP-complete, we show a reduction from any CNF formula to a CNF
formula with (at most) 3 literals per clause. We illustrate the idea by showing how to transform
a clause involving 4 literals to two clauses involving 3 literals each: given clause a ∨ b ∨ c ∨ d we
introduce the auxiliary variable z and then output (a ∨ b ∨ z) ∧ (z̄ ∨ c ∨ d); one can check that the
latter is satisfiable iff the former is satisfiable.

1.1 Other NP-Complete Problems

SAT and 3-SAT are useful since they can be used to prove many other problems NP-complete.
Recall that we can show that some language L is NP-complete by demonstrating a Karp reduction
from 3-SAT to L. As an example, consider IndSet (see [1] for more details): Given a formula φ
with n variables and m clauses, we define a graph G with 7m vertices. There will be 7 vertices
for each clause, corresponding to 7 possible satisfying assignments. G contains edges between all
vertices that are inconsistent (including those in the same cluster). One can check that there is an
independent set of size m iff φ has a satisfying assignment.

2 Self-Reducibility and Search vs. Decision

We have so far been talking mainly about decision problems, which can be viewed as asking whether
a solution exists. But one often wants to solve the corresponding search problem, namely to find a
solution (if one exists). For many problems, the two have equivalent complexity.

Let us define things more formally. Say L ∈ NP. Then there is some polynomial-time Turing
machine M such that x ∈ L iff ∃w : M(x,w) = 1. The decision problem for L is: given x, determine
if x ∈ L. The search problem for L is: given x ∈ L, find w such that M(x,w) = 1. (Note that
we should technically speak of the search problem for L relative to M since there can be multiple
non-deterministic Turing machines deciding L, and each such machine will define its own set of
“solutions”. Nevertheless, we stick with the inaccurate terminology and hope things will be clear
from the context.) The notion of reducibility we want in this setting is Cook-Turing reducibility. We
define it for decision problems, but can apply it to search problems via the natural generalization.

Definition 1 Language L is Cook-Turing reducible to L′ if there is a poly-time Turing machine M
such that for any oracle O′ deciding L′, machine MO′(·) decides L. (I.e., MO′(·)(x) = 1 iff x ∈ L.)

3-3

Note that if L is Karp-reducible to L′, then there is also a Cook-Turing reduction from L
to L′. In general, however, the converse is not belied to hold. Specifically, any language in coNP
is Cook-Turing reducible to any NP-complete language, but there is no Karp-reduction from a
coNP-complete language to a language in NP unless coNP = NP.

Returning to the question of search vs. decision, we have:

Definition 2 A language L ∈ NP is self-reducible if there is a Cook-Turing reduction from the
search problem for L to the decision problem for L. Namely, there is polynomial-time Turing
machine M such that for any oracle OL deciding L, and any x ∈ L we have (x,MOL(·)(x)) ∈ RL.

(One could also ask about reducing the decision problem to the search problem. For languages in
NP, however, such a reduction always exists.)

Theorem 3 SAT is self-reducible.

Proof Assume we have an oracle that tells us whether any CNF formula is satisfiable. We show
how to use such an oracle to find a satisfying assignment for a given (satisfiable) CNF formula φ.
Say φ is a formula on n variables x1, . . . , xn. If b1, . . . , b` ∈ {0, 1} (with ` ≤ n), then by φ|b1,...,b`

we mean the CNF formula on the variables x`+1, . . . , xn obtained by setting x1 = b1, . . . , x` = b`

in φ. (φ|b1,...,b`
is easily computed given φ and b1, . . . , b`.) The algorithm proceeds as follows:

• For i = 1 to n do:

– Set bi = 0.

– If φb1,...,bi is not satisfiable, set bi = 1. (Note: we determine this using our oracle for SAT.)

• Output b1, . . . , bn.

We leave it to the reader to show that this always returns a satisfying assignment (assuming φ is
satisfiable to begin with).

The above proof can be generalized to show that every NP-complete language is self-reducible.

Theorem 4 Every NP-complete language L is self-reducible.

Proof The idea is similar to above, with one new twist. Let M be a polynomial-time non-
deterministic Turing machine such that

L = {x | ∃w : M(x, w) = 1}.

We first define a new language L′:

L′ = {(x, b) | ∃w′ : M(x, bw′) = 1}.

I.e., (x, b) ∈ L′ iff there exists a w with prefix b such that M(x,w) = 1. Note that L′ ∈ NP; thus,
there is a Karp reduction f such that x ∈ L′ iff f(x) ∈ L. (Here is where we use the fact that L is
NP-complete.)

Assume we have an oracle deciding L; we design an algorithm that, given x ∈ L, finds w with
M(x,w) = 1. Say the length of w (given x) is n = poly(|x|). The algorithm proceeds as follows:

• For i = 1 to n do:

3-4

– Set bi = 0.

– If f((x, b1, . . . , bi)) 6∈ L, set bi = 1. (We run this step using our oracle for L.)

• Output b1, . . . , bn.

We leave it to the reader to show that this algorithm gives the desired result.

Other languages in NP (that are not NP-complete) may be self-reducible as well. An example
is given by graph isomorphism, a language that is not known (or believed) to be in P or NP-
complete. On the other hand, it is believed that not all languages in NP are self-reducible. One
conjectured example is the natural relation derived from factoring: although compositeness can be
decided in polynomial time, we do not believe that polynomial-time factoring algorithms exist.

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

3-5

