
Notes on Complexity Theory Last updated: September, 2011

Lecture 4

Jonathan Katz

1 Diagonalization

In this lecture and the next one, we discuss two types of results that are related by the technique
used in their proofs. Both kinds of results are also fundamental in their own right.

The common proof technique is called diagonalization. It is somewhat difficult to formally define
the term, but roughly the idea is that we want to show the existence of some language L (with
certain properties) that cannot be decided by any Turing machine within some set S = {M1, . . .}.

1

We do so by starting with some L0 (with the property we want) and then, for i = 1, . . . changing
Li−1 to Li such that none of M1, . . . ,Mi decide Li. Of course part of the difficulty is to make sure
that Li has the property we want also.

Actually, one can also prove the existence of an undecidable language using this technique
(though not quite as explicitly as stated above). Consider an enumeration x1, . . . of all binary
strings, and an enumeration M1, . . . of all Turing machines.2 Define L as follows: xi 6∈ L iff
Mi(xi) = 1. (A picture really helps here. For those who have seen it before, this is exactly
analogous to the proof that there is no bijection from the integers to the reals. In fact, that
gives a 1-line proof of the existence of undecidable languages: the set of languages is uncountable,
while the set of Turing machines is countable.) Say some machine M decides L, and let i be such
that M = Mi. But then consider xi: if M(xi) = 1 then xi 6∈ L and so M is wrong; if M(xi) rejects
or doesn’t halt then xi ∈ L and M is again wrong!

1.1 Hierarchy Theorems

It is natural to wonder whether additional resources actually give additional power. We show that
this is the case (at least to a certain extent) for space and time. We first give a definitions of
“well-behaved” functions.

Definition 1 A function f : N → N is space constructible if it is non-decreasing and there exists
a Turing machine that on input 1n outputs the binary representation of f(n) using O(f(n)) space.
Note that if f is space constructible, then there exists a Turing machine that on input 1n marks off
exactly f(n) cells on its work tapes (say, using a special symbol) without ever exceeding O(f(n))
space.

For space bounds, it is often assumed that f(n) ≥ log n as well. We will make this assumption
throughout this class, unless explicitly stated otherwise. Note that non-trivial algorithms using
sub-logarithmic space do exist; in particular, space(1) is a proper subset of space(log log n) (see
[2, Lecture 4]). Nevertheless, sub-logarithmic space causes difficulties because there is not even
enough space to store a counter indicating the position of the input-tape head.

1Note that the set of all Turing machines is countably infinite, and so S is countable.
2An efficiently computable enumeration is obtained by letting Mi denote the Turing machine represented by the

binary representation of i.

4-1

Definition 2 A function f : N → N with f(n) ≥ n for all n is time constructible if it is non-
decreasing and there exists a Turing machine that on input 1n outputs the binary representation of
f(n) in O(f(n)) steps. Note that if f is time constructible, then there exists a Turing machine that
on input 1n runs for O(f(n)) steps and then halts.

All functions you would “normally encounter” are space and time constructible; functions that
aren’t are specifically constructed counterexamples.

We first show that more space gives more power.

Theorem 1 (Space hierarchy theorem) Let G(n) ≥ log n be space constructible, and g(n) =
o(G(n)). Then space(g(n)) is a proper subset of space(G(n)).

Proof We show the existence of a language L such that L ∈ space(G(n)) but L 6∈ space(g(n)).
We define L by describing a Turing machine ML, using space O(G(n)), that decides it. ML does
the following on input w = (M,y) of length |w| = n:

1. Run M(w) with at most G(n) space and for at most 22G(n) steps (these bounds are imposed
on M), using space at most 3 · G(n).

2. If M(w) accepts within the given time and space bounds, then reject. Otherwise, accept.

In step 1, we can use the fact that G is space constructible to mark off exactly G(n) tape cells for
M to use. We can similarly mark off an additional 2G(n) cells to use as a counter for checking the
number of steps M makes, and one last set of G(n) cells to use for any remaining computation. By
construction, ML uses space G̃(n) = 4 · G(n).

We need to show that no machine using space O(g(n)) can decide L. Assume the contrary.
Then there exists a machine M ′

L
deciding L and using space g̃(n) = O(g(n)). Choose k large

enough so that g̃(k) < G(k), so that3 M ′

L
makes fewer than 2G(k) steps on inputs of length k, and

so that4 the simulation of M ′

L
on inputs of length k can be performed in G(k) space. Consider the

input w = (M ′

L
, 1k). If we run ML(w) then (1) ML has enough time and space to simulate the

entire execution of M ′

L
(w), and thus (2) ML(w) outputs the opposite of whatever M ′

L
(w) outputs.

We conclude that ML and M ′

L
do not decide the same language.

We have a completely analogous time hierarchy theorem, though the result is quantitatively
(slightly) weaker.

Theorem 2 (Time hierarchy theorem) Let G be time constructible. If g(n) log g(n) = o(G(n)),
then time(g(n)) is a proper subset of time(G(n)).

Proof The high-level structure of the proof is the same as in the proof of the previous theorem.
We define L by giving a Turing machine ML, using time O(G(n)), that decides it. ML does the
following on input w = (M,y) of length |w| = n:

1. Run M(w) using at most c · G(n) steps for some fixed constant c (see below).

2. If M(w) accepts within the given time bound, then reject. Otherwise, accept.

3This condition is achievable because M
′

L runs in time at most O(n2O(g(n))) (something we will show later in the
course), which is asymptotically smaller than 22G(n).

4This condition is achievable because universal simulation with constant space overhead is possible.

4-2

We can implement step 1 using the fact that G is time constructible: in alternating steps, simulate
M(w) and run a Turing machine that is guaranteed to stop within O(G(n)) steps; halt the entire
computation once the latter machine halts. We thus have that ML runs in time O(G(n)).

We need to show that no machine using time O(g(n)) can decide L. Assume the contrary. Then
there exists a machine M ′

L
deciding L in time O(g(n)). Consider an input of the form w = (M ′

L
, 1k).

If we run ML(w) then, for k large enough, ML has enough time to simulate the entire execution
of M ′

L
(w). (Here we use the fact that universal simulation is possible with logarithmic overhead.)

But then, for k large enough, ML(w) outputs the opposite of whatever M ′

L
(w) outputs. We conclude

that ML and M ′

L
do not decide the same language.

The barrier to getting a tighter time hierarchy theorem is the logarithmic time overhead in
universal simulation. If a better simulation were possible, we would obtain a tighter separation.

There is a non-deterministic time hierarchy as well; the details are more complicated because
it is not possible to simply “flip” the output of a non-deterministic machine. (Do you see why?)

Theorem 3 (Non-deterministic time hierarchy theorem) Let g,G be time constructible. If
g(n + 1) = o(G(n)), then ntime(g(n)) is not contained in ntime(G(n)).

Proof We sketch a proof different from the one in the book. We will also rely on the fact that
non-deterministic universal simulation with only constant time overhead is possible.

Once again, we define a language L by describing a machine that decides it. Consider the
non-deterministic machine ML that on input w = (M, 1k, y) of length |w| = n, where M is now
interpreted as a non-deterministic Turing machine, does:

1. If |y| < G(|M | + k) then run M(M, 1k , y0) and M(M, 1k, y1) for at most G(n) steps (each),
and accept iff they both accept.

2. If |y| ≥ G(|M |+k) then accept iff M(M, 1k, ε) rejects when using non-deterministic choices y.
(Here ε denotes the empty string.) Note that if M does not halt on this computation path
(e.g., because y is not long enough), then ML rejects.

By what we have said before regarding universal simulation of non-deterministic Turing machines,
and using the conditions of the theorem, ML runs in time O(G(n)).

Say there exists a non-deterministic machine M ′

L
running in time g̃(n) = O(g(n)) and decid-

ing L. Consider an input of the form w = (M ′

L
, 1k, ε) for k sufficiently large. We have

w ∈ L ⇔ M ′

L
(M ′

L
, 1k, 0) = M ′

L
(M ′

L
, 1k, 1) = 1 Definition of ML

⇔ (M ′

L
, 1k, 0), (M ′

L
, 1k, 1) ∈ L M ′

L
decides L

⇔ M ′

L
(M ′

L
, 1k, 00) = M ′

L
(M ′

L
, 1k, 01) = 1

M ′

L
(M ′

L
, 1k, 10) = M ′

L
(M ′

L
, 1k, 11) = 1 Definition of ML

Let t be the smallest integer with t ≥ G(|M ′

L
| + k). Continuing the above line of reasoning we get

w ∈ L ⇔ ∀y ∈ {0, 1}t : M ′

L
(M ′

L
, 1k, y) = 1 As above. . .

⇔ ∀y ∈ {0, 1}t : (M ′

L
, 1k, y) ∈ L M ′

L
decides L

⇔ ∀y ∈ {0, 1}t : M ′

L
(M ′

L
, 1k, ε) rejects

on computation path y Definition of ML

⇔ M ′

L
(M ′

L
, 1k, ε) = 0 Definition of non-determinism

⇔ w 6∈ L M ′

L
decides L

This is a contradiction, so we conclude that no such M ′

L
can exist.

4-3

Bibliographic Notes

The proof of the non-deterministic time hierarchy theorem given here is due to [1].

References

[1] L. Fortnow and R. Santhanam. Robust Simulations and Significant Separations. ICALP (1),
2011. Available at http://arxiv.org/abs/1012.2034.

[2] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

4-4

