
Notes on Complexity Theory Last updated: September 14, 2011

Lecture 5

Jonathan Katz

1 Diagonalization, Continued

1.1 Ladner’s Theorem

We know that there exist NP-complete languages. Assuming P 6= NP , any NP-complete language
lies in NP \ P. Are there languages that are neither in P nor NP-complete? Ladner’s theorem
tells us that there are.

As some intuition for Ladner’s theorem, take some language L ∈ NP \ P. Using padding, we
will make L “easy enough” so that it can’t be NP-complete, while keeping it “hard enough” so
it is not in P either. Say the best algorithm for deciding L runs in time nlog n for concreteness.
(The same argument, though messier, works as long as the best algorithm deciding L requires
super-polynomial time.) Define

L′ = {(x, y) | x ∈ L and |x| + |y| = |x|log log |x|}.

If L′ ∈ P, then L would be decidable in time nO(log log n), a contradiction. On the other hand,
L′ is decidable in time N log N where N is such that N log log N = n (the input length). We have

N = no(1), and so L′ is decidable in time no(log log(no(1)). If L were Karp-reducible to L′, then L

would be solvable in time no(log n), a contradiction. The main challenge in making the above formal
is that it is hard to pin down the “best” algorithm for deciding some language L, or that algorithm’s
exact running time.

Theorem 1 Assuming P 6= NP, there exists a language A ∈ NP \ P which is not NP-complete.

Note: We did not cover the proof of Ladner’s theorem in class, but one is included here for
completeness.

Proof The high-level intuition behind the proof is that we construct A by taking an NP-complete
language and “blowing holes” in it in such a way that the language is no longer NP-complete yet
not in P either. The specific details are quite involved.

Let M1, . . . denote an enumeration of all polynomial-time Turing machines with boolean output;
formally, this can be achieved by considering an enumeration1 of M × Z (where M is the set of
Turing machines), and defining Mi as follows: if the ith item in this enumeration is (M, j), then
Mi(x) runs M(x) for at most |x|j steps. We remark that M1, . . . also gives an enumeration of
languages in P (with languages appearing multiple times). In a similar way, let F1, . . . denote an
enumeration of polynomial-time Turing machines without the restriction of their output length.
Note that this gives an enumeration of functions computable in polynomial time.

Define language A as follows:

A = {x | x ∈ SAT ∧ f(|x|) is even},

1Since both M and Z are countable, it follows that M× Z is countable.

5-1

for some function f that remains to be defined. Note that as long as we ensure that f is computable
in polynomial time, then A ∈ NP . We define f by a polynomial-time Turing machine Mf that
computes it. Let MSAT be a machine that decides SAT (not in polynomial time, of course. . .), and
let f(0) = f(1) = 2. On input 1n (with n > 1), Mf proceeds in two stages, each lasting for exactly
n steps:

1. During the first stage, Mf computes f(0), f(1), . . . until it runs out of time. Suppose the last
value of f it was able to compute was f(x) = k. The output of Mf will be either k or k + 1,
to be determined by the next stage.

2. Then:

• If k = 2i is even, then Mf tries to find a z ∈ {0, 1}∗ such that Mi(z) outputs the “wrong”
answer as to whether z ∈ A. (That is, Mf tries to find z such that either z ∈ A but
Mi(z) = 0, or the opposite.) This is done by computing Mi(z),MSAT(z), and f(|z|) for
all strings z in lexicographic order. If such a string is found within the allotted time,
the output of Mf is k + 1. Otherwise, the output of Mf is k.

• If k = 2i− 1 is odd, then Mf tries to find a string z such that Fi(z) is an incorrect Karp
reduction from SAT to A. (That is, Mf tries to find a z such that either z ∈ SAT but
Fi(z) 6∈ A, or the opposite.) This is done by computing Fi(z), MSAT(z), MSAT(Fi(z)),
and f(|Fi(z)|). If such a string is found within the allotted time, then the output of Mf

is k + 1; otherwise, the output is k.

By its definition, Mf runs in polynomial time. Note also that f(n + 1) ≥ f(n) for all n.
We claim that A 6∈ P. Suppose the contrary. Then A is decided by some Mi. In this case,

however, the second stage of Mf with k = 2i will never find a z satisfying the desired property,
and so f is eventually a constant function and in particular f(n) is odd for only finitely-many n.
But this implies that A and SAT coincide except for finitely-many strings. But this implies that
SAT ∈ P, a contradiction to our assumption that P 6= NP .

Similarly, we claim that A is not NP-complete. Suppose the contrary. Then there is a
polynomial-time function Fi which gives a Karp reduction from SAT to A. Now f(n) will be even
for only finitely-many n, implying that A is a finite language. But then A ∈ P, a contradiction to
our assumption that P 6= NP.

As an addendum, we note that (assuming P 6= NP , of course) we know of no “natural”
languages provably in NP\P that are not NP-complete. However, there are a number of languages
conjectured to fall in this category, including graph isomorphism and essentially all languages
derived from cryptographic assumptions (e.g., factoring).

1.2 Relativizing the P vs. NP Question

We conclude by showing some limitations of the diagonalization technique. (Interestingly, these
limitations are proven by diagonalization!). Informally, diagonalization relies on the following
properties of Turing machines:

1. The fact that Turing machines can be represented by finite strings.

2. The fact that one Turing machine can simulate another (without much overhead).

5-2

Any proof that relies only on these facts is essentially treating Turing machines as black boxes
(namely, looking only at their input/output), without caring much about the details of how they
work. In that case, the proof should apply just as well to oracle Turing machines.

An oracle is just a function O : {0, 1}∗ → {0, 1}, and of course for any O we have a corresponding
language L. Fixing O, an oracle Turing machine MO is given the ability to make “queries” to O and
obtain the result in a single time step.2 (We have already seen this notation when we talked about
Cook-Turing reductions.) Fixing some O, we say L ∈ PO if there exists a polynomial-time Turing
machine M such that x ∈ L ⇔ MO(x) = 1. Similarly, L ∈ NPO if there exists a polynomial-time
Turing machine M such that x ∈ L ⇔ ∃w : MO(x,w) = 1. More generally, for any class C defined
in terms of Turing machines deciding languages in that class, we can define the class CO in the
natural way.

Given a result about two complexity classes C1, C2, we can ask whether that same result holds
about CO

1 , CO
2 for any oracles O. If so, then the result relativizes. Any result proved via diagonaliza-

tion, as defined above, relativizes. As examples: the result about universal simulation relativizes,
as does the time-hierarchy theorem.

We now show that the P vs. NP question does not relativize. We demonstrate this by showing
that there exists oracles A,B such that

PA = NPA but PB 6= NPB .

When this result was first demonstrated [3], it was taken as an indication of the difficulty of resolving
the P vs. NP question using “standard techniques”. It is important to note, however, that various
non-relativizing results are known. As one important example, the proof that SAT is NP-complete
does not relativize. (This is not the best example, since SAT is a problem and not a class.) See [5,
Lect. 26] and [2, 4, 6] for further discussion.

An oracle A for which PA = NPA. Recall that EXP =
⋃

c time(2nc

). Let A be an EXP-complete
language. It is obvious that PA ⊆ NPA for any A, so it remains to show that NPA ⊆ PA. We do
this by showing that

NPA ⊆ EXP ⊆ PA.

The second inclusion is immediate (just use a Karp reduction from any language L ∈ EXP to
the EXP-complete problem A), and so we have only to prove the first inclusion. This, too, is
easy: Let L ∈ NPA and let M be a polynomial-time non-deterministic machine such that MA

decides L. Then using a deterministic exponential-time machine M ′ we simply try all possible
non-deterministic choices for M , and whenever M makes a query to A we have M ′ answer the
query by itself.

An oracle B for which PB 6= NPB. This is a bit more interesting. We want to find an oracle B

such that NPB \PB is not empty. For any oracle (i.e., language) B, define language LB as follows:

LB
def
= {1n | B ∩ {0, 1}n 6= ∅}.

It is immediate that LB ∈ NPB for any B. (On input 1n, guess x ∈ {0, 1}n and submit it to the
oracle; output 1 iff the oracle returns 1.) As a “warm-up” to the desired result, we show:

2There are subtleties in dealing with space-bounded oracle machines. We only discuss time-bounded oracle ma-

chines here.

5-3

Claim 2 For any deterministic, polynomial-time oracle machine M , there exists a language B

such that MB does not decide LB.

Proof Given M with polynomial running time p(·), we construct B as follows: let n be the
smallest integer such that 2n > p(n). Note that on input 1n, machine M cannot query its oracle
on all strings of length n. We exploit this by defining B in the following way:

Run M(1n) and answer “0” to all queries of M . Let b be the output of M , and let
Q = {q1, . . .} denote all the queries of length exactly n that were made by M . Take
arbitrary x ∈ {0, 1}n \Q (we know such an x exists, as discussed above). If b = 0, then
put x in B; if b = 1, then take B to just be the empty set.

Now MB(1n) = b (since B returns 0 for every query made by M(1n)), but this answer is incorrect
by construction of B.

This claim is not enough to prove the desired result, since we need to reverse the order of
quantifiers and show that there exists a language B such that for all deterministic, polynomial-time
M we have that MB does not decide LB. We do this by extending the above argument. Consider
an enumeration M1, . . . of all deterministic, polynomial-time machines with running times p1,
We will build B inductively. Let B0 = ∅ and n0 = 1. Then in the ith iteration do the following:

• Let ni be the smallest integer such that 2ni > pi(ni) and also ni > pj(nj) for all 1 ≤ j < i.

• Run Mi(1
ni) and respond to its queries according to Bi−1. Let Q = {q1, . . .} be the queries

of length exactly ni that were made by Mi, and let x ∈ {0, 1}ni \ Q (again, we know such an
x exists). If b = 0 then set Bi = Bi−1 ∪ {x}; if b = 1 then set Bi = Bi−1 (and so Bi does not
contain any strings of length ni).

Let B =
⋃

i Bi. We claim that B has the desired properties. Indeed, when we run Mi(1
ni) with

oracle access to Bi, we can see (following the reasoning in the previous proof) that Mi will output
the wrong answer (and thus MBi

i does not decide LBi
). But the output of Mi(1

ni) with oracle
access to B is the same as the output of Mi(1

ni) with oracle access to Bi, since all strings in B \Bi

have length greater than pi(ni) and so none of Mi’s queries (on input 1ni) will be affected by using
B instead of Bi. It follows that MB

i does not decide LB .

2 Space Complexity

Recall that for space complexity (in both the deterministic and non-deterministic cases) we measure
the number of cells used on the work tape only. This allows us to talk meaningfully of sublinear-
space algorithms, and algorithms whose output may be longer than the space used.

Note also that in the context of space complexity we may assume without loss of generality that
machines have only a single work tape. This is so because we can perform universal simulation of
a k-tape Turing machine on a Turing machine with just a single work tape, with only a constant
factor blowup in the space complexity.

When we talk about non-deterministic space complexity we refer to our original notion of non-
deterministic Turing machines, where there are two transition functions and at every step the
machine makes a non-deterministic choice as to which one to apply. It turns out that, just as
we did in the case of NP , we can give a “certificate-based” definition of non-deterministic space

5-4

classes as well, though we need to be a little careful since the length of the certificate may exceed
the space-bound of the machine. In particular, we imagine a (deterministic) machine with an input
tape and work tape as usual, and also a special certificate tape. When measuring the space used
by this machine, we continue to look at the space on the work tape only. The certificate tape (like
the input tape) is a read-only tape; moreover (and unlike the input tape), we restrict the Turing
machine so that it may only move its certificate-tape head from left to right (or stay in place).
This gives a definition equivalent to the definition in terms of non-deterministic Turing machines;
in particular:

Claim 3 L ∈ nspace(s(n)) iff there exists a (deterministic) Turing machine with a special “read-
once” certificate tape as described above that uses space O(s(n)) (where n is the input length, and
is independent of the certificate length), and such that x ∈ L iff there exists a certificate w such
that M(x,w) = 1.

If the certificate-tape head is allowed to move back-and-forth across its tape, this gives the machine
significantly more power; in fact, if we consider log-space machines that move freely on their
certificate tape we get the class NP ! See [5, Chap. 5] for further discussion regarding the above.

Bibliographic Notes

The intuition before the proof of Ladner’s theorem is due to Russell Impagliazzo (personal com-
munication).

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

[2] E. Allender. Oracles versus Proof Techniques that Do Not Relativize. SIGAL Intl. Symposium
on Algorithms, pp. 39–52, 1990.

[3] T. Baker, J. Gill, and R. Solovay. Relativizations of the P
?
= NP Question. SIAM J. Computing

4(4): 431–442, 1975.

[4] L. Fortnow. The Role of Relativization in Complexity Theory. Bulletin of the European Asso-
ciation for Theoretical Computer Science, 52: 229–243, 1994.

[5] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

[6] J. Hartmanis, R. Chang, S. Chari, D. Ranjan, and P. Rohatgi. Relativization: A Revi-
sionist Retrospective. Current Trends in Theoretical Computer Science, 1993. Available from
http://www.cs.umbc.edu/ chang/papers/revisionist.

5-5

