
Notes on Complexity Theory Last updated: September, 2011

Lecture 6

Jonathan Katz

1 Space Complexity

We define some of the important space-complexity classes we will study:

Definition 1

PSPACE
def=

⋃
c space(nc)

NPSPACE
def=

⋃
c nspace(nc)

L
def= space(log n)

NL
def= nspace(log n).

We have seen that time(t(n)) ⊆ ntime(t(n)) ⊆ space(t(n)). What can we say in the other
direction? To study this we look at configurations of a Turing machine, where a configuration
consists of all the information necessary to describe the Turing machine at some instant in time.
We have the following easy claim.

Claim 1 Let M be a (deterministic or non-deterministic) machine using space s(n). The number
of configurations CM (n) of M on any fixed input of length n is bounded by:

CM (n) ≤ |QM | · n · s(n) · |ΣM |s(n), (1)

where QM are the states of M and ΣM is the alphabet of M . In particular, when s(n) ≥ log n we
have CM (n) = 2Θ(s(n)).

Proof The first term in Eq. (1) comes from the number of states, the second from the possible
positions of the input head, the third from the possible positions of the work-tape head, and the
last from the possible values stored on the work tape. (Note that since the input is fixed and the
input tape is read-only, we do not need to consider all possible length-n strings that can be written
on the input tape.)

We can use this to obtain the following relationship between space and time:

Theorem 2 Let s(n) be space constructible with s(n) ≥ log n. Then space(s(n)) ⊆ time(2O(s(n)))
and nspace(s(n)) ⊆ ntime(2O(s(n))).

Proof Let L ∈ space(s(n)), and let M be a machine using space O(s(n)) and deciding L.
Consider the computation of M(x) for some input x of length n. There are at most CM (n) = 2Θ(s(n))

configurations of M on x, but if M(x) ever repeats a configuration then it would cycle and never
halt. Thus, the computation of M(x) must terminate in at most CM (n) = 2Θ(s(n)) steps.

6-1

Let L ∈ nspace(s(n)). Then there is a non-deterministic Turing machine M deciding L and
using space O(s(n)) on every computation path (i.e., regardless of the non-deterministic choices it
makes). Consider a machine M ′ that runs M but only for at most 2O(s(n)) ≥ CM (n) steps (and
rejects if M has not halted by that point); this can be done using a counter of length O(s(n)) and so
M ′ still uses O(s(n)) space. We claim that M ′ still decides L. Clearly if M(x) = 0 then M ′(x) = 0.
If M(x) = 1, consider the shortest computation path on which M(x) accepts. If this computation
path uses more than CM (|x|) steps, then some configuration of M must repeat. But then there
would be another sequence of non-deterministic choices that would result in a shorter accepting
computation path, a contradiction. We conclude that M(x) has an accepting computation path of
length at most CM (|x|), and so if M(x) accepts then so does M ′(x).

The theorem above may seem to give a rather coarse bound for space(s(n)), but intuitively it
does appear that space is more powerful than time since space can be re-used while time cannot. In
fact, it is known that time(s(n)) is a strict subset of space(s(n)) (for space constructible s(n) ≥ n),
but we do not know much more than that. We conjecture that space is much more powerful than
time; in particular, we believe:

Conjecture 3 P 6= PSPACE.

Note that P = PSPACE would, in particular, imply P = NP.

1.1 PSPACE and PSPACE-Completeness

As in our previous study of NP, it is useful to identify those problems that capture the essence
of PSPACE in that they are the “hardest” problems in that class. We can define a notion of
PSPACE-completeness in a manner exactly analogous to NP-completeness:

Definition 2 Language L′ is PSPACE-hard if for every L ∈ PSPACE it holds that L ≤p L′. Language
L′ is PSPACE-complete if L′ ∈ PSPACE and L′ is PSPACE-hard.

Note that if L is PSPACE-complete and L ∈ P, then P = PSPACE.
As usual, there is a “standard” (but unnatural) complete problem; in this case, the following

language is PSPACE-complete:

L
def= {(M, x, 1s) | M(x) accepts using space at most s} .

For a more natural PSPACE-complete problem we turn to a variant of SAT. Specifically, we consider
the language of totally quantified boolean formulae (denoted TQBF) which consists of quantified
formulae of the form:

∃x1∀x2 · · ·Qnxn φ(x1, . . . , xn),

where φ is a boolean formula, and Qi = ∃ and Qi+1 = ∀ alternate (it does not matter which is
first). An expression of the above form is in TQBF if it is true: that is, if it is the case that “for
all x1 ∈ {0, 1}, there exists an x2 ∈ {0, 1} . . . such that φ(x1, . . . , xn) evaluates to true”. More
generally, if M is a polynomial-time Turing machine then any statement of the form

∃x1 ∈ {0, 1}poly(n)∀x2 ∈ {0, 1}poly(n) · · ·Qnxn ∈ {0, 1}poly(n) M(x1, . . . , xn) = 1,

can be converted to a totally quantified boolean formula.

6-2

Theorem 4 TQBF is PSPACE-complete.

Proof It is not too difficult to see that TQBF ∈ PSPACE, since in polynomial space we can try
all settings of all the variables and keep track of whether the quantified expression is true.

We next show that TQBF is PSPACE-complete. Given a PSPACE machine M deciding some
language L, we reduce the computation of M(x) to a totally quantified boolean formula. Since M
uses space nk for some constant k, we may encode configurations of M on some input x of length n
using O(nk) bits. Given an input x, we construct (in polynomial time) a sequence of totally
quantified boolean formulae ψ0(a, b), . . ., where ψi(a, b) is true iff there is a path (i.e., sequence
of steps of M) of length at most 2i from configuration a to configuration b. We then output
ψnk(start, accept), where start denotes the initial configuration of M(x), and accept is the (unique)
accepting configuration of M . Note that M(x) = 1 iff ψnk(start, accept) is true (using Theorem 2).

We need now to construct the {ψi}. Constructing ψ0 is easy: to evaluate ψ0(a, b) we simply test
whether a = b or whether configuration b follows from configuration a in one step. (Recalling the
proof that SAT is NP-complete, it is clear that this can be expressed as a polynomial-size boolean
formula.) Now, given ψi we construct ψi+1. The “obvious” way of doing this would be to define
ψi+1(a, b) as:

∃c : ψi(a, c) ∧ ψi(c, b).

While this is correct, it would result in a formula ψnk of exponential size! (To see this, note that
the size of ψi+1 is roughly double the size of ψi.) Also, we have not made use of any universal
quantifiers. Instead, we proceed a bit more cleverly and “encode” ψi(a, c) ∧ ψi(c, b) in a smaller
expression. Define ψi+1(a, b) as:

∃c∀x, y :
((

(x, y) = (a, c)
) ∨ (

(x, y) = (c, b)
)) ⇒ ψi(x, y);

it is easy to see that constructing ψi+1 from ψi can be done efficiently. (A technical point: although
the quantifiers of ψi are “buried” inside the expression for ψi1 , it is easy to see that the quantifiers
of ψi can be migrated to the front without changing the truth of the overall expression.) The key
point is that whereas previously the size of ψi+1 was double the size of ψi, here the size of ψi+1 is
only an O(nk) additive factor larger than ψi and so the size of ψnk will be polynomial.

A very observant reader may note that everything about the above proof applies to NPSPACE
as well, and so the above implies that TQBF is NPSPACE-complete and PSPACE = NPSPACE! We
will see another proof of this later.

Playing games. The class TQBF captures the existence of a winning strategy for a certain player
in bounded-length perfect-information games (that can be played in polynomial time). Specifically,
consider a two-player game where players alternate making moves for a total of n turns. Given
moves p1, . . . , pn by the players, let M(p1, . . . , pn) = 1 iff player 1 has won the game. (Note that
M can also encode a check that every player made a legal move; a player loses if it makes the first
non-legal move.) Then player 1 has a winning strategy in the game iff there exists a move p1 that
player 1 can make such that for every possible response p2 of player 2 there is a move p3 for player 1,
. . . , such that M(p1, . . . , pn) = 1. Many popular games have been proven to be PSPACE-complete.
(For this to be made formal, the game must be allowed to grow without bound.)

6-3

2 Configuration Graphs and the Reachability Method

In this section, we will see several applications of the so-called reachability method. The basic idea
is that we can view the computation of a non-deterministic machine M on input x as a directed
graph (the configuration graph of M(x)) with vertices corresponding to configurations of M(x)
and an edge from vertex i to vertex j if there is a one-step transition from configuration i to
configuration j. Each vertex in this graph has out-degree at most 2. (We can construct such
a graph for deterministic machines as well. In that case the graph has out-degree 1 and is less
interesting.) If M uses space s(n) ≥ log n, then vertices in the configuration graph of M(x) can
be represented using O(s(n)) bits.1 If we assume, without loss of generality, that M has only a
single accepting state, then the question of whether M(x) accepts is equivalent to the question of
whether there is a path from the initial configuration of M(x) to the accepting configuration. We
refer to this as the reachability problem in the graph of interest.

2.1 NL and NL-Completeness

We further explore the connection between graphs and non-deterministic computation by looking
at the class NL. As usual, we can try to understand NL by looking at the “hardest” problems in
that class. Here, however, we need to use a more refined notion of reducibility:

Definition 3 L is log-space reducible to L′ if there is a function f computable in space O(log n)
such that x ∈ L ⇔ f(x) ∈ L′.

Note that if L is log-space reducible to L′ then L is Karp-reducible to L′ (by Theorem 2); in general,
however, we don’t know whether the converse is true.

Definition 4 L is NL-complete if (1) L ∈ NL, and (2) for all L′ ∈ NL it holds that L′ is log-space
reducible to L.

Log-space reducibility is needed2 for the following result:

Lemma 5 If L is log-space reducible to L′ and L′ ∈ L (resp., L′ ∈ NL) then L ∈ L (resp., L ∈ NL).

Proof Let f be a function computable in log space such that x ∈ L iff f(x) ∈ L′. The “trivial”
way of trying to prove this lemma (namely, on input x computing f(x) and then determining
whether f(x) ∈ L′) does not work: the problem is that |f(x)| may potentially have size ω(log |x|)
in which case this trivial algorithm uses superlogarithmic space. Instead, we need to be a bit more
clever. The basic idea is as follows: instead of computing f(x), we simply compute the ith bit
of f(x) whenever we need it. In this way, although we are wasting time (in re-computing f(x)
multiple times), we never uses more than logarithmic space.

1Note that x is fixed, so need not be stored as part of a configuration. Whenever we construct an algorithm M ′

that operates on the configuration graph of M(x), the input x itself will be written on the input tape of M ′ and so
M ′ will not be “charged” for storing x.

2In general, to study completeness in some class C we need to use a notion of reducibility computable within C.

6-4

