Notes on Complexity Theory Last updated: September, 2011

Lecture 7
Jonathan Katz

1 Configuration Graphs and the Reachability Method

1.1 NL and NL-Completeness

Coming back to problems on graphs, consider the problem of directed connectivity (denoted CONN).
Here we are given a directed graph on n-vertices (say, specified by an adjacency matrix) and two
vertices s and ¢, and want to determine whether there is a directed path from s to t.

Theorem 1 CONN is NL-complete.

Proof To see that it is in NL, we need to show a non-deterministic algorithm using log-space
that never accepts if there is no path from s to ¢, and that sometimes accepts if there is a path
from s to t. The following simple algorithm achieves this:

if s =t accept
set Vcurrent ‘= S
for i =1 to n:
guess a vertex Upext
if there is no edge from vcyrrent t0 Unext, reject
if vpext = t, accept
Vcurrent = Unext
if ¢ = n and no decision has yet been made, reject

The above algorithm needs to store i (using logn bits), and at most the labels of two vertices
Veurrent aNd Unext (using O(logn) bits).

To see that CONN is NL-complete, assume L € NL and let M;, be a non-deterministic log-space
machine deciding L. Our log-space reduction from L to CONN takes input = € {0, 1}" and outputs a
graph (represented as an adjacency matrix) in which the vertices represent configurations of My (x)
and edges represent allowed transitions. (It also outputs s = start and ¢ = accept, where these
are the starting and accepting configurations of M (x), respectively.) Each configuration can be
represented using O(logn) bits, and the adjacency matrix (which has size O(n?)) can be generated
in log-space as follows:

For each configuration :
for each configuration j:
Output 1 if there is a legal transition from 4 to j, and 0 otherwise
(if 7 or j is not a legal state, simply output 0)
Output start, accept

The algorithm requires O(logn) space for ¢ and j, and to check for a legal transition. |

7-1

We can now easily prove the following:
Theorem 2 For s(n) > logn a space-constructible function, NSPACE(s(n)) C TIME(206(™)),

Proof We can solve CONN in linear time (in the number of vertices) using breadth-first search,
and so CONN € P. By the previous theorem, this means NL C P (a special case of the theorem).
In the general case, let L € NSPACE(s(n)) and let M be a non-deterministic machine deciding L
using O(s(n)) space. We construct a deterministic machine running in time 20(5(") that decides L
by solving the reachability problem on the configuration graph of M (x), specifically, by determining
whether the accepting state of M (x) (which we may assume unique without loss of generality) is
reachable from the start state of M (x). This problem can be solved in time linear in the number
of vertices in the configuration graph. [|

Corollary 3 NL C P.
Summarizing what we know,
LC NLC P C NP CPSPACE C EXP.

By the hierarchy theorems (and Savitch’s theorem, below) we know NL is a strict subset of PSPACE,
and P is a strict subset of EXP. But we cannot prove that any of the inclusions above is strict.

1.2 Savitch’s Theorem

In the case of time complexity, we believe that non-determinism provides a huge (exponential?)
benefit. For space complexity, this is surprisingly not the case:

Theorem 4 (Savitch’s Theorem) Let s(n) > logn be a space-constructible function. Then
NSPACE(s(n)) C SPACE(s(n)?).

Proof Thisis another application of the reachability method. Let L € NSPACE(s(n)). Then there
is a non-deterministic machine M deciding L and using space O(s(n)). Consider the configuration
graph Gjs of M(x) for some input z of length n, and recall that (1) vertices in Gjs can be
represented using O(s(n)) bits, and (2) existence of an edge in Gy from some vertex i to another
vertex j can be determined using O(s(n)) space.

We may assume without loss of generality that M has a single accepting configuration (e.g., M
erases its work tape and moves both heads to the left-most cell of their tapes before accepting).
M (z) accepts iff there is a directed path in G from the starting configuration of M (x) (called
start) to the accepting configuration of M (z) (called accept). There are V = 200(") vertices in
G, and the crux of the proof comes down to showing that reachability on a general V-node graph
can be decided in deterministic space O(log? V).

Turning to that general problem, we define a (deterministic) recursive algorithm Path with the
property that Path(a, b,4) outputs 1 iff there is a path of length at most 2 from @ to b in a given
graph G; the algorithm only needs the ability to enumerate the vertices of G and to test for directed
edges between any two vertices i, j in this graph. The algorithm proceeds as follows:

7-2

Path(a, b,1):
e If i =0, output “yes” if a = b or if there is an edge from a to b. Otherwise, output “no”.
e If i > 0 then for each vertex v:
— If Path(a,v,i — 1) and Path(v,b,i — 1), return “yes” (and halt).
e Return “no”.

Let S(i) denote the space used by Path(a,b,i). We have S(i) = O(logV) + S(i — 1) and S(0) =
O(log V). This solves to S(i) = O(i - log V).

We solve our original problem by calling Path(start, accept,log V') using the graph Gjs, where
G has V = 2006() vertices. This uses space O(log? V') = O(s(n)?), as claimed. [|

We have seen the next result before, but it also follows as a corollary of the above:
Corollary 5 PSPACE = NPSPACE.

Is there a better algorithm for directed connectivity than what Savitch’s theorem implies? Note
that the algorithm implies by Savitch’s theorem uses polylogarithmic space but superpolynomial
time (specifically, time 20(log? ™). On the other hand, we have linear-time algorithms for solving
directed connectivity but these require linear space. The conjecture is that L # NL, in which case
directed connectivity does not have a log-space algorithm, though perhaps it would not be earth-
shattering if this conjecture were proven to be false. Even if L # NL, we could still hope for an
algorithm solving directed connectivity in O(log? n) space and polynomial time.

1.3 The Immerman-Szelepcsényi Theorem

As yet another example of the reachability method, we will show the somewhat surprising result
that non-deterministic space is closed under complementation.

Theorem 6 CONN € NL.

Proof Recall that

onw 4 (G, s,1) G is a directed graph in which
- 77777 there is no path from vertex s to vertex t |

Let V' denote the number of vertices in the graph G under consideration. We show that CONN € NL
using the certificate-based definition of non-deterministic space complexity. Thus, we will show a
(deterministic) machine M using space O(log V') such that the following holds: if there is no directed
path in G from s to t, then there exists a certificate that will make M (G, s,t) accept. On the other
hand if there is a directed path in G from s to ¢, then no certificate can make M (G, s,t) accept.
Note the difficulty here: it is easy to give a proof (verifiable in space O(log V')) proving the ezistence
of a path — the certificate is just the path itself. But how does one construct a proof (verifiable in
space O(log V') proving non-existence of a path?

We build our certificate from a number of ‘primitive’ certificates. Fix (G, s,t), let C; denote the
set of vertices reachable from s in at most ¢ steps, and let ¢; = |C;|. We want to prove that t ¢ Cy .
We already know that we can give a certificate Path;(s,v) (verifiable in logarithmic space) proving
that there is a path of length at most ¢ from s to v. Now consider the following:

7-3

e Assuming ¢;— is known, we can construct a certificate noPath;(s, v) (verifiable in logarithmic
space) proving that there is no path of length at most ¢ from s to v. (L.e., v € C;.) The
certificate is

U1, Pathi,l(s, Ul), N Pathi,l(s, UCFl)?

for vq,...,ve_, € Ci—1 in ascending order. This certificate is verified by checking that (1) the
number of vertices listed is exactly ¢;—1, (2) the vertices are listed in ascending order, (3) none
of the listed vertices is equal to v or is a neighbor of v, and (4) each certificate Path;_1(s,v;)
is correct. This can all be done in O(log V') space with read-once access to the certificate.

e Assuming c¢;—; is known, we can construct a certificate Size;(k) (verifiable in logarithmic
space) proving that ¢; = k. The certificate is simply the list of all the vertices vy,... in G
(in ascending order), where each vertex is followed by either Path;(s,v) or noPath;(s,v),
depending on whether v € C; or not. This certificate can be verified by checking that (1) all
vertices are in the list, in ascending order, (2) each certificate Path;(s,v) or noPath;(s,v) is
correct, and (3) the number of vertices in C; is exactly k.

(Note that the verifier only needs the ability to detect edges between two given vertices of G.)
Observing that the size of Cy = {s} is already known, the certificate that (G, s,t) € CONN is just

Sizel(cl), SiZGQ(CQ), ce ,Sizev_l(cv_l), noPathV(s, t).

Each certificate Size;(¢;) can be verified in logarithmic space, and after each such verification the
verifier only needs to store ¢;. Thus the entire certificate above is verifiable in logarithmic space. B

Corollary 7 If s(n) > logn is space constructible, then NSPACE(s(n)) = cONSPACE(s(n)).

Proof This is just an application of the reachability method. Let L € coNSPACE(s(n)). Then
there is a non-deterministic machine M using space s(n) and with the following property: if x € L
then M (x) accepts on every computation path, while if x ¢ L then there is some computation
path on which M (x) rejects. Considering the configuration graph Gjps of M (z) for some input x
of length n, we see that x € L iff there is no directed path in Gps from the starting configuration
to the rejecting configuration. Since Gy has V = 290(") vertices, and the existence of an edge
between two vertices ¢ and j can be determined in O(s(n)) = O(log V') space, we can apply the
previous theorem to get a non-deterministic algorithm deciding L in space O(log V') = O(s(n)). B

Corollary 8 NL = coNL.

7-4

