
Notes on Complexity Theory Last updated: September, 2011

Lecture 7

Jonathan Katz

1 Configuration Graphs and the Reachability Method

1.1 NL and NL-Completeness

Coming back to problems on graphs, consider the problem of directed connectivity (denoted conn).
Here we are given a directed graph on n-vertices (say, specified by an adjacency matrix) and two
vertices s and t, and want to determine whether there is a directed path from s to t.

Theorem 1 conn is NL-complete.

Proof To see that it is in NL, we need to show a non-deterministic algorithm using log-space
that never accepts if there is no path from s to t, and that sometimes accepts if there is a path
from s to t. The following simple algorithm achieves this:

if s = t accept
set vcurrent := s
for i = 1 to n:

guess a vertex vnext

if there is no edge from vcurrent to vnext, reject
if vnext = t, accept
vcurrent := vnext

if i = n and no decision has yet been made, reject

The above algorithm needs to store i (using log n bits), and at most the labels of two vertices
vcurrent and vnext (using O(log n) bits).

To see that conn is NL-complete, assume L ∈ NL and let ML be a non-deterministic log-space
machine deciding L. Our log-space reduction from L to conn takes input x ∈ {0, 1}n and outputs a
graph (represented as an adjacency matrix) in which the vertices represent configurations of ML(x)
and edges represent allowed transitions. (It also outputs s = start and t = accept, where these
are the starting and accepting configurations of M(x), respectively.) Each configuration can be
represented using O(log n) bits, and the adjacency matrix (which has size O(n2)) can be generated
in log-space as follows:

For each configuration i:
for each configuration j:

Output 1 if there is a legal transition from i to j, and 0 otherwise
(if i or j is not a legal state, simply output 0)

Output start, accept

The algorithm requires O(log n) space for i and j, and to check for a legal transition.

7-1

We can now easily prove the following:

Theorem 2 For s(n) ≥ log n a space-constructible function, nspace(s(n)) ⊆ time(2O(s(n))).

Proof We can solve conn in linear time (in the number of vertices) using breadth-first search,
and so conn ∈ P. By the previous theorem, this means NL ⊆ P (a special case of the theorem).

In the general case, let L ∈ nspace(s(n)) and let M be a non-deterministic machine deciding L
using O(s(n)) space. We construct a deterministic machine running in time 2O(s(n)) that decides L
by solving the reachability problem on the configuration graph of M(x), specifically, by determining
whether the accepting state of M(x) (which we may assume unique without loss of generality) is
reachable from the start state of M(x). This problem can be solved in time linear in the number
of vertices in the configuration graph.

Corollary 3 NL ⊆ P.

Summarizing what we know,

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

By the hierarchy theorems (and Savitch’s theorem, below) we know NL is a strict subset of PSPACE,
and P is a strict subset of EXP. But we cannot prove that any of the inclusions above is strict.

1.2 Savitch’s Theorem

In the case of time complexity, we believe that non-determinism provides a huge (exponential?)
benefit. For space complexity, this is surprisingly not the case:

Theorem 4 (Savitch’s Theorem) Let s(n) ≥ log n be a space-constructible function. Then
nspace(s(n)) ⊆ space(s(n)2).

Proof This is another application of the reachability method. Let L ∈ nspace(s(n)). Then there
is a non-deterministic machine M deciding L and using space O(s(n)). Consider the configuration
graph GM of M(x) for some input x of length n, and recall that (1) vertices in GM can be
represented using O(s(n)) bits, and (2) existence of an edge in GM from some vertex i to another
vertex j can be determined using O(s(n)) space.

We may assume without loss of generality that M has a single accepting configuration (e.g., M
erases its work tape and moves both heads to the left-most cell of their tapes before accepting).
M(x) accepts iff there is a directed path in GM from the starting configuration of M(x) (called
start) to the accepting configuration of M(x) (called accept). There are V = 2O(s(n)) vertices in
GM , and the crux of the proof comes down to showing that reachability on a general V -node graph
can be decided in deterministic space O(log2 V).

Turning to that general problem, we define a (deterministic) recursive algorithm Path with the
property that Path(a, b, i) outputs 1 iff there is a path of length at most 2i from a to b in a given
graph G; the algorithm only needs the ability to enumerate the vertices of G and to test for directed
edges between any two vertices i, j in this graph. The algorithm proceeds as follows:

7-2

Path(a, b, i):

• If i = 0, output “yes” if a = b or if there is an edge from a to b. Otherwise, output “no”.

• If i > 0 then for each vertex v:

– If Path(a, v, i− 1) and Path(v, b, i− 1), return “yes” (and halt).

• Return “no”.

Let S(i) denote the space used by Path(a, b, i). We have S(i) = O(log V) + S(i − 1) and S(0) =
O(log V). This solves to S(i) = O(i · log V).

We solve our original problem by calling Path(start, accept, log V) using the graph GM , where
GM has V = 2O(s(n)) vertices. This uses space O(log2 V) = O(s(n)2), as claimed.

We have seen the next result before, but it also follows as a corollary of the above:

Corollary 5 PSPACE = NPSPACE.

Is there a better algorithm for directed connectivity than what Savitch’s theorem implies? Note
that the algorithm implies by Savitch’s theorem uses polylogarithmic space but superpolynomial
time (specifically, time 2O(log2 n)). On the other hand, we have linear -time algorithms for solving
directed connectivity but these require linear space. The conjecture is that L 6= NL, in which case
directed connectivity does not have a log-space algorithm, though perhaps it would not be earth-
shattering if this conjecture were proven to be false. Even if L 6= NL, we could still hope for an
algorithm solving directed connectivity in O(log2 n) space and polynomial time.

1.3 The Immerman-Szelepcsényi Theorem

As yet another example of the reachability method, we will show the somewhat surprising result
that non-deterministic space is closed under complementation.

Theorem 6 conn ∈ NL.

Proof Recall that

conn
def=

{
(G, s, t) :

G is a directed graph in which
there is no path from vertex s to vertex t

}
.

Let V denote the number of vertices in the graph G under consideration. We show that conn ∈ NL
using the certificate-based definition of non-deterministic space complexity. Thus, we will show a
(deterministic) machine M using space O(log V) such that the following holds: if there is no directed
path in G from s to t, then there exists a certificate that will make M(G, s, t) accept. On the other
hand if there is a directed path in G from s to t, then no certificate can make M(G, s, t) accept.
Note the difficulty here: it is easy to give a proof (verifiable in space O(log V)) proving the existence
of a path — the certificate is just the path itself. But how does one construct a proof (verifiable in
space O(log V)) proving non-existence of a path?

We build our certificate from a number of ‘primitive’ certificates. Fix (G, s, t), let Ci denote the
set of vertices reachable from s in at most i steps, and let ci = |Ci|. We want to prove that t 6∈ CV .
We already know that we can give a certificate Pathi(s, v) (verifiable in logarithmic space) proving
that there is a path of length at most i from s to v. Now consider the following:

7-3

• Assuming ci−1 is known, we can construct a certificate noPathi(s, v) (verifiable in logarithmic
space) proving that there is no path of length at most i from s to v. (I.e., v 6∈ Ci.) The
certificate is

v1, Pathi−1(s, v1), . . . , vci−1 , Pathi−1(s, vci−1),

for v1, . . . , vci−1 ∈ Ci−1 in ascending order. This certificate is verified by checking that (1) the
number of vertices listed is exactly ci−1, (2) the vertices are listed in ascending order, (3) none
of the listed vertices is equal to v or is a neighbor of v, and (4) each certificate Pathi−1(s, vj)
is correct. This can all be done in O(log V) space with read-once access to the certificate.

• Assuming ci−1 is known, we can construct a certificate Sizei(k) (verifiable in logarithmic
space) proving that ci = k. The certificate is simply the list of all the vertices v1, . . . in G
(in ascending order), where each vertex is followed by either Pathi(s, v) or noPathi(s, v),
depending on whether v ∈ Ci or not. This certificate can be verified by checking that (1) all
vertices are in the list, in ascending order, (2) each certificate Pathi(s, v) or noPathi(s, v) is
correct, and (3) the number of vertices in Ci is exactly k.

(Note that the verifier only needs the ability to detect edges between two given vertices of G.)
Observing that the size of C0 = {s} is already known, the certificate that (G, s, t) ∈ conn is just

Size1(c1), Size2(c2), . . . ,SizeV−1(cV−1), noPathV (s, t).

Each certificate Sizei(ci) can be verified in logarithmic space, and after each such verification the
verifier only needs to store ci. Thus the entire certificate above is verifiable in logarithmic space.

Corollary 7 If s(n) ≥ log n is space constructible, then nspace(s(n)) = conspace(s(n)).

Proof This is just an application of the reachability method. Let L ∈ conspace(s(n)). Then
there is a non-deterministic machine M using space s(n) and with the following property: if x ∈ L
then M(x) accepts on every computation path, while if x 6∈ L then there is some computation
path on which M(x) rejects. Considering the configuration graph GM of M(x) for some input x
of length n, we see that x ∈ L iff there is no directed path in GM from the starting configuration
to the rejecting configuration. Since GM has V = 2O(s(n)) vertices, and the existence of an edge
between two vertices i and j can be determined in O(s(n)) = O(log V) space, we can apply the
previous theorem to get a non-deterministic algorithm deciding L in space O(log V) = O(s(n)).

Corollary 8 NL = coNL.

7-4

