
Notes on Complexity Theory Last updated: October, 2015

Lecture 9

Jonathan Katz

1 The Polynomial Hierarchy

1.1 Defining the Polynomial Hierarchy via Oracle Machines

Here we show a third definition of the levels of the polynomial hierarchy in terms of oracle machines.

Definition 1 Define Σi,Πi inductively as follows:

• Σ0
def
= P.

• Σi+1
def
= NPΣi and Πi+1 = coNPΣi.

(Note that even though we believe Σi 6= Πi, oracle access to Σi gives the same power as oracle
access to Πi. Do you see why?)

We show that this leads to an equivalent definition. For this section only, let ΣO
i refer to the

definition in terms of oracles. We prove by induction that Σi = ΣO
i . (Since ΠO

i = coΣO
i , this proves

it for Πi,Π
O
i as well.) For i = 1 this is immediate, as Σ1 = NP = NPP = ΣO

1 .
Assuming Σi = ΣO

i , we prove that Σi+1 = ΣO
i+1. Let us first show that Σi+1 ⊆ ΣO

i+1. Let
L ∈ Σi+1. Then there exists a polynomial-time Turing machine M such that

x ∈ L ⇔ ∃w1∀w2 · · ·Qi+1wi+1 M(x,w1, . . . , wi+1) = 1.

In other words, there exists a language L′ ∈ Πi such that

x ∈ L ⇔ ∃w1 (x,w1) ∈ L′.

By our inductive assumption, Πi = ΠO
i ; thus, L ∈ NPΠO

i = NPΣO
i = ΣO

i+1 and so Σi+1 ⊆ ΣO
i+1.

It remains to show that ΣO
i+1 ⊆ Σi+1 (assuming ΣO

i = Σi). Let L ∈ ΣO
i+1. This means there

exists a non-deterministic polynomial-time machine M and a language L′ ∈ ΣO
i such that M , given

oracle access to Li, decides L. In other words, x ∈ L iff ∃y, q1, a1, . . . , qn, an (here, y represents the
non-deterministic choices of M , while qj, aj represent the queries/answers of M to/from its oracle)
such that:

1. M , on input x, non-deterministic choices y, and oracle answers a1, . . . , an, makes queries
q1, . . . , qn and accepts.

2. For all j, we have aj = 1 iff qj ∈ L′.

Since L′ ∈ ΣO
i = Σi (by our inductive assumption) we can express the second condition, above, as:

• aj = 1 ⇔ ∃yj
1∀yj

2 · · ·Qiy
j
i M ′(qj, y

j
1, . . . , y

j
i) = 1

• aj = 0 ⇔ ∀yj
1∃yj

2 · · ·Q
′
iy

j
i M ′(qj, y

j
1, . . . , y

j
i) = 0

9-1

for some (deterministic) polynomial-time machine M ′. The above leads to the following specifica-
tion of L as a Σi+1 language:

x ∈ L iff ∃
(

y, q1, a1, . . . , qn, an, {yj
1}

n
j=1

)

∀
(

{yj
2}

n
j=1

)

· · · Qi+1

(

{yj
i+1

}n
j=1

)

:

• M , on input x, non-deterministic choices y, and oracle answers a1, . . . , an, makes queries
q1, . . . , qn and accepts, and

• Let Y be the set of j’s such that aj = 1, and let N be the set of j’s such that aj = 0.

– For all j ∈ Y , we have M ′(qj, y
j
1, . . . , y

j
i) = 1

– For all j ∈ N , we have M ′(qj, y
j
2, . . . , y

j
i+1

) = 0.

2 Non-Uniform Complexity

Boolean circuits offer an alternate model of computation: a non-uniform one as opposed to the
uniform model of Turing machines. (The term “uniform” is explained below.) In contrast to
Turing machines, circuits are not meant to model “realistic” computations for arbitrary-length
inputs. Circuits are worth studying for at least two reasons, however. First, when one is interested
in inputs of some fixed size (or range of sizes), circuits make sense as a computational model. (In
the real world, efficient circuit design has been a major focus of industry.) Second, from a purely
theoretical point of view, the hope has been that circuits would somehow be “easier to study” than
Turing machines (even though circuits are more powerful!) and hence that it might be easier to
prove lower bounds for the former than for the latter. The situation here is somewhat mixed: while
some circuit lower bounds have been proved, those results have not really led to any significant
separation of uniform complexity classes.

Circuits are directed, acyclic graphs where nodes are called gates and edges are called wires.
Input gates are gates with in-degree zero, and we will take the output gate of a circuit to be the
(unique) gate with out-degree zero. (For circuits having multiple outputs there may be multiple
output gates.) In a boolean circuit, each input gate is identified with some bit of the input; each
non-input gate is labeled with a value from a given basis of boolean functions. The standard basis
is B0 = {¬,∨,∧}, where each gate has bounded fan-in. Another basis is B1 = {¬, (∨i)i∈N, (∧i)i∈N},
where ∨i,∧i have in-degree i and we say that this basis has unbounded fan-in. In any basis, gates
may have unbounded fan-out.

A circuit C with n input gates defines a function C : {0, 1}n → {0, 1} in the natural way: a given
input x = x1 · · · xn immediately defines the values of the input gates; the values at any internal
gate are determined inductively; C(x) is then the value of the output gate. If f : {0, 1}∗ → {0, 1}
is a function, then a circuit family C = {Ci}i∈N computes f if f(x) = C|x|(x) for all x. In other
words, for all n the circuit Cn agrees with f restricted to inputs of length n. (A circuit family
decides a language if it computes the characteristic function for that language.) This is the sense
in which circuits are non-uniform: rather than having a fixed algorithm computing f on all input
lengths (as is required, e.g., in the case of Turing machines), in the non-uniform model there may
be a completely different “algorithm” (i.e., circuit) for each input length.

Two important complexity measures for circuits are their size and their depth.1 The size of a

1When discussing circuit size and depth, it is important to be clear what basis for the circuit is assumed. By

default, we assume basis B0 unless stated otherwise.

9-2

circuit is the number of gates it has. The depth of a circuit is the length of the longest path from
an input gate to an output gate. A circuit family C = {Cn}n∈N has size T (·) if, for all sufficiently
large n, circuit Cn has size at most T (n). It has depth D(·) if, for all sufficiently large n, circuit Cn

has depth at most D(n). The usual convention is not to count “not” gates in either of the above:
one can show that all the “not” gates of a circuit can be pushed to immediately follow the input
gates; thus, ignoring “not” gates affects the size by at most n and the depth by at most 1.

Definition 2 L ∈ size(T (n)) if there is a circuit family C = {Cn} of size T (·) that decides L.

We stress that the above is defined over B0. Note also that we do not use big-O notation, since
there is no “speedup theorem” in this context.

One could similarly define complexity classes in terms of circuit depth (i.e., L ∈ depth(D(n))
if there is a circuit family C = {Cn} of depth D(·) that decides L); circuit depth turns out to be
somewhat less interesting unless there is simultaneously a bound on the circuit size.

2.1 The Power of Circuits

We have seen this before (in another context) but it is worth stating again: every function — even
an undecidable one! — is computable by a circuit family over the basis B0. Let us first show how to

express any f as a circuit over B1. Fix some input length n. Define F0
def
= {x ∈ {0, 1}n | f(x) = 0}

and define F1 analogously. We can express f (restricted to inputs of length n) as:

f(x) =
∨

x′∈F1

[x = x′],

where [x = x′] denotes a boolean expression which is true iff x = x′. (Here, x represents the
variables, and x′ is a fixed string.) Letting xi denote the ith bit of x, note that [x = x′] ⇔
(
∧

i:x′=1
xi) ∧ (

∧

i:x′=0
x̄i). Putting everything together, we have:

f(x) =
∨

x′∈F1

(

(
∧

i:x′=1
xi) ∧ (

∧

i:x′=0
x̄i)

)

. (1)

But the above is just a circuit of depth2 2 over B1. (The size of the circuit is at most Θ(2n).) The
above representation is called the disjunctive normal form (DNF) for f . Another way to express f
is as:

f(x) =
∧

x′∈F0

[x 6= x′],

where [x 6= x′] has the obvious meaning. Note, [x 6= x′] ⇔
(

∨

i:x′

i
=1

x̄i

)

∨
(

∨

i:x′

i
=0

xi

)

; putting

everything together gives:

f(x) =
∧

x′∈F0

((

∨

i:x′

i
=1

x̄i

)

∨
(

∨

i:x′

i
=0

xi

))

, (2)

the conjunctive normal form (CNF) for f . This gives another circuit of depth 2 over B1.
The above show how to obtain a circuit for f over the basis B1. But one can transform any

circuit over B1 to one over B0. The idea is simple: each ∨-gate of in-degree k is replaced by a “tree”

2Recall that “not” gates are not counted.

9-3

of degree-2 ∨-gates, and each ∧-gate of in-degree k is replaced by a “tree” of degree-2 ∧-gates. In
each case we transform a single gate having fan-in k to a sub-circuit with k− 1 gates having depth
⌈log k⌉. Applying this transformation to Eqs. (1) and (2), we obtain a circuit for any function f
over the basis B0 with at most n · 2n gates and depth at most n + ⌈log n⌉. We thus have:

Theorem 1 Every function is in size(n · 2n).

This can be improved to show that for every ε > 0 every function is in size

(

(1 + ε) · 2n

n

)

. This
is tight up to low-order terms, as we show next time.

Bibliographic Notes

For more on circuit complexity see the classic text by Wegener [6] and the excellent book by
Vollmer [5]. (The forthcoming book by Jukna [2] also promises to be very good.) The claim
that all functions can be computed by circuits of size (1 + ε) · 2n/n was proven by Lupanov. A
proof of a weaker claim (showing this bound over the basis {∨,∧,¬,⊕}) can be found in my notes
from 2005 [3, Lecture 5]. A proof over the basis B0 can be found in [4, Section 2.13]. Frandsen
and Miltersen [1] give another exposition, and discuss what is known about the low-order terms in
both the upper and lower bounds.

References

[1] G.S. Frandsen and P.B. Miltersen. Reviewing Bounds on the Circuit Size of the Hard-
est Functions. Information Processing Letters 95(2): 354–357, 2005. Available on-line at
http://www.daimi.au.dk/~bromille/Papers/shannon.pdf

[2] S. Jukna. Boolean Function Complexity: Advances and Frontiers, Springer, 2012.

[3] J. Katz. Lecture notes for CMSC 652 — Complexity Theory. Fall 2005.

[4] J.E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley, 1998.

[5] H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

[6] I. Wegener. The Complexity of Boolean Functions. John Wiley & Sons, 1987.

9-4

