University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 15

1 Pseudorandom Functions and Permutations

A PRG was nice, because it allowed us to share random keys of small size and generate
shared pseudorandom keys of large size. But even nicer than having shared access to a
pseudorandom string would be shared access to a pseudorandom function. Let’s look at
what this might mean.

For simplicity, we consider functions with fixed input and output length. Consider a
function F : {0,1}* x {0,1}™ — {0,1}" in which the first input to F is called the key
and the second input to F' is simply called the input. k is the key length, m is the input
length and n is the output length of F'. F is called a keyed function for the following reason:
fixing a particular key s € {0,1}* defines a function F; : {0,1}™ — {0,1}" as follows:
Fs(z) = F(s,z). So you can view choosing a key at random as choosing a particular
function at random from some large set of functions.

Now, informally speaking, our PRGs had the property that their outputs “looked ran-
dom” when evaluated on a random seed. The analogous property we would like from F
is that it should “look like a random function” when a random key is chosen. But what
exactly is a random function?

A random function can be viewed in the following way: if you give the function an input
z € {0,1}™ that it has not seen before, the function picks a random y € {0,1}", stores
(z,y) for future reference, and outputs y. If you later ask the function an input z which it
has seen before, it finds the appropriate pair (z,y) and returns y (so the function always
reports the same answer if you ask it the same query).

We can also view all these choices as being made in advance, instead of upon receiving a
query. Thus, for every possible input z; € {0,1}™ the function chooses a random y; € {0,1}"
and stores (x;,y;) in some huge table. In fact, if we order the zs lexicographically, it is
enough to just store the ordered list y1, ..., Yn-

How much space would this actually take if we were to implement this? Well, each y;
requires n bits and there are 2™ of them to store, for a total of n - 2™ bits of storage just
to represent a random function. Clearly, it is infeasible to store a truly random function
for moderate values of m,n. But we can certainly imagine such a thing existing as an
oracle. (In fact, you could imagine implementing a random function if the answers were
chosen “on-the-fly” instead of in advance. But there would be some bound on the number
of different queries you could ask it, depending on the amount of storage that is available.
If you want to share a random function, however, the answers must be decided upon in
advance. And since you don’t know what the queries are going to be, this requires sharing
the full n - 2™ bits.) We denote the set of all functions from {0,1}™ to {0,1}" by Rand™™".

We will now define a formal notion of a pseudorandom function (PRF). Recall our infor-
mal definition that a PRF “looks like” a random function; more formally, a PPT adversary



cannot tell them apart with too high a probability. In what way? Well, say we give an
adversary a black box and tell it that the box implements either a random function or a
pseudorandom function' and ask it to determine which one. Then the probability that
the adversary guesses “pseudorandom” should be the same whether the function is actu-
ally pseudorandom or not. More formally, a function F : {0,1}* x {0,1}™ — {0,1}" is a
(t,e)-PRF if for all algorithms A running in time at most ¢ the following holds:

Prls « {0,1}F : AFs() = 1] — Pr[F « Rand™™" : AT() = 1]| < e.

(Note that here we have k a fixed value, so the above is not a function of a parameter k as
was the case in previous lectures. Similarly, instead of making A run in polynomial time
we have instead fixed an upper bound ¢ for the adversary’s running time. The intention
was to simplify things a little bit!) In words, the left expression consider the experiment
in which a random key s is chosen, and A is given oracle access to the function F;. In the
right experiment, a completely random function F' from m bits to n bits is chosen, and A
is given oracle access to F. We claim that A cannot distinguish between these two cases
with probability better than e.

We always implicitly assume that it is “easy” to compute Fi(z), given both s and z.
But the above definition says, in particular, that it is “hard” to predict the value of Fs(z)
— even when z is known — if s is unknown and randomly chosen.

Although we did not give a formal, complexity-theoretic definition of one-way functions,
we hope the reader will see how such a definition would proceed.? And we therefore state
the following theorem with little justification and no proof.

Theorem 1 Pseudorandom functions exist if and only if one-way functions exist.

1.1 PRPs

We can define an analogous notion of a pseudorandom permutation (PRP). Here, we con-
sider functions P : {0,1}* x {0,1}™ — {0, 1}™ such that, for all s € {0,1}*, we have that P;
is a permutation over {0,1}™ (and call functions with this property keyed permutations).
Also, we define Perm™ as the set of all permutations on {0,1}™. (As an exercice: how many
bits does it take to represent a completely random permutation? I.e., how many different
permutations over {0,1}" are there?) In a manner completely analogous to the above, we
say that P is a (¢, ¢)-PRP if it is a keyed permutation such that for all algorithms A running
in time at most ¢ we have:

Prfs < {0,1}% : A7) = 1] — Pr[P « Perm™ : AP() = 1]| < e.

Finally, we mention that once we have a keyed permutation it is natural to talk about
taking the inverse of P, for a particular s. Again, in this case we would hope that it be

!Technically speaking, the original F is a pseudorandom function but any particular F; (i.e., once key
s is fixed) is not. If you know the value of s, the function no longer “looks random”. So instead of saying
that the box “implements a pseudorandom function” I should technically say the box “impelments F for
randomly-chosen s”. But I won’t always be this careful.

2For the very interested reader, we point out that the complexity-theoretic definition can no longer
consider functions F' with input length; instead, the input length must depend on the key length.



“easy” to compute P; !(y), given s and y (note that this is not necessarily the case — as
we have seen already in this class, there are plenty of permutations for which the forward
direction can be computed easily but the inverse cannot be). But of course, we might hope
that it be “difficult” to predict P;"!(y) when s is unknown. In fact, there are secure PRPs
for which it is “easy” to predict the inverse of P, !(y), for a particular choice of y and even
for a randomly chosen s.

So this requires another definition. We say that P is a strong (t,€)-PRP if it is a keyed
permutation such that for all algorithms A running in time at most ¢ we have:

Prls « {0,1}* : APOPTO) = 1] — Pr[P + Perm™ : APOPTI0) = 1]| < e.

Note that (in each experiment) we now give A access to two oracles: one representing the
forward evaluation of the permutation and one representing the inverse.

As mentioned earlier, not every PRP is automatically a strong PRP. We state this here
as a theorem:

Theorem 2 Assuming the existence of one-way functions, there exists a keyed permutation
P which is a PRP but not a strong PRP.

It is a useful exercise to try to construct an example of such a P.
Finally, we state the following theorem for reference:

Theorem 3 Strong PRPs exist if and only if one-way functions exist.

1.2 Block Ciphers

What is done in practice? In practice, people use block ciphers. These block ciphers are
keyed functions, just as described above. Famous examples of block ciphers include DES,
IDEA, triple-DES, and AES. As an example, DES is just a keyed permutation DES :
{0,1}56 x {0,1}%* — {0,1}5%. That is, the key length of DES is 56 bits, and once a key s
is fixed, DES; is a permutation over {0,1}54. Furthermore, it is efficient to compute and to
invert DES if you know the key.

When block ciphers are used in an application, it is important to ask what properties
of the cipher are assumed. For example, does security rely on the fact that the cipher is a
PRP or does it require the stronger assumption that the cipher is a strong PRP? On the
one hand, it is reasonable to assume that DES or AES is a strong PRP (ciphers are designed
with this in mind). On the other hand, this is a stronger assumption, so basing the security
of your scheme on a weaker assumption is preferable. Finally, some “off-the-shelf” ciphers
may be PRPs but not strong PRPs.

Finally, we mention that the security of block ciphers (as opposed to what we have been
aiming for in this class) is largely heuristic. In other words, we have no particular reason
to believe that AES is a good block cipher, other than the fact that it was designed by
experts and studied intensively by cryptographers for the past 2 years. On the other hand,
we could (by Theorem 3) construct a strong PRP based on the hardness of factoring. The
hardness of factoring is backed up by 300 years of intense scrutiny by many, many people
who were experts in a variety of fields. The huge disadvantage of this approach is that the
resulting function would be orders of magnitude slower than DES or AES, and therefore
not practical for use.



