Lecture 22

1 Message Authentication Codes used in Practice

Recall from our previous discussion on MACs that it is “easy” to construct a MAC for short messages using a PRF. Constructing a MAC for longer messages is more difficult. Last time, we gave one construction — the XOR-MAC — that was secure for arbitrarily-long messages. We review this construction, discuss its security, and then give some other MACs that are widely used in practice.

XOR-MAC. We describe this scheme in more generality than we did last time. Let $F : \{0, 1\}^k \times \{0, 1\}^m \rightarrow \{0, 1\}^n$ be a (t, ϵ)-PRF; the sender and receiver will share a random key $s \in \{0, 1\}^k$. Fix some parameter $\ell < m$ (we see below where this parameter comes into play). Let the notation (i) denote the $(\ell - 1)$-bit representation of integer i in binary. To authenticate message M, parse M as a sequence of blocks M_1, \ldots, M_t each $(m - \ell)$-bits long. Choose a random value $r \in \{0, 1\}^{m-1}$ and compute:

$$\text{tag} = F_s(0 \circ r) \oplus F_s(1 \circ (1) \circ M_1) \oplus F_s(1 \circ (2) \circ M_2) \oplus \cdots \oplus F_s(1 \circ (t) \circ M_t).$$

The complete tag is (r, tag) (the receiver needs r in order to verify).

We may note a few interesting points about this scheme. First, it is randomized; we saw last time how the deterministic version of this scheme is not secure. Second, the message M is assumed to have length which is a multiple of $(m - \ell)$. This restriction is not really that severe, since there are secure\footnote{Note that padding with, say, all zeros is not secure, for the following reason: say $m - \ell = 64$. Then the MAC of $M = 1$ and $M' = 10$ would be identical (since they are both padded out to 10^{63}), and then the receiver cannot unambiguously tell which message was intended.} ways to pad a message so that its length becomes a multiple of $(m - \ell)$; however, such padding may lead to slight loss of efficiency (since more computations of F are required to MAC a longer message). Finally, the maximum message-length supported by this scheme is $(m - \ell) \cdot (2^{\ell-1} - 1)$ bits (since the counter (i) included with each block should not “cycle”).

We did not mention last time the exact security result for this scheme, so we do so here.

Theorem 1 For any adversary attacking the XOR-MAC scheme running in time (roughly) t and requesting at most q tags from its MAC oracle, the probability of successfully forging a new, valid message/tag pair is at most $2q^2 \cdot 2^{-m} + 2^{-n} + \epsilon$.

Roughly speaking, the first term in the above bound comes from the probability of a “collision” in the random value r (recall the “birthday problem” from previous lectures and the notes on probability); the second term comes from the fact that tag is n bits long, and the
adversary can always guess a correct tag with probability 2^{-n}; and the final term comes from the security of the PRF.

We do not give a proof here. For more detail about the scheme and a full proof of security, see [1].

CBC-MAC. A widely-used MAC is based on the CBC mode of encryption that we discussed previously. However, note that this connection is entirely fortuitous — there is not reason, in general, to assume that a good mode of encryption will give rise to a secure MAC (and vice versa). In fact, the CBC-MAC differs slightly (and has different security properties) from the CBC mode of encryption.

Assume $F : \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a (t,ϵ)-PRF (note that the input and output lengths are now assumed to be the same, for convenience only). We may define CBC-MAC as follows: the sender and receiver share a random key $s \in \{0,1\}^k$. Let m be some fixed parameter; the authentication scheme will only be defined for messages of length $n \cdot m$ (i.e., m blocks, each n bits long). To authenticate a message $X = x_1, \ldots, x_m$, the sender sets $y_0 = 0^n$ and (for $i = 1$ to m) sets $y_i = F_s(x_1 \oplus y_{i-1})$. The tag is simply y_m. Specification of the verification algorithm is left to the reader.

This scheme — in contrast to the CBC mode of encryption — is deterministic; in the context of message authentication this does not necessarily present a problem. Note also that, in contrast to the XOR-MAC, this construction works for fixed message lengths only. In fact, it is completely insecure when variable-length messages are used. As a simple example of an attack, say the adversary requests a tag on message $x_1 \in \{0,1\}^n$ — receiving t — and then requests a tag on message t — receiving t'. Note that that t' is a valid tag for the message $x_1, 0^n$ (we leave verification of this fact to the reader). The following theorem therefore refers only to the case where fixed-length messages (m blocks long) are authenticated.

Theorem 2 For any adversary attacking the CBC-MAC, running in time (roughly) t and requesting at most q tags from its MAC oracle, the probability of successfully forging a new, valid message/tag pair is at most $\frac{q^2 m^2}{2^t} + 2^{-n} + \epsilon$.

Roughly speaking, the first term corresponds to a sort of collision (we do not discuss details here); the second term comes from the fact that the adversary can always “guess” an n-bit tag correctly with probability 2^{-n}; and the third term comes from the security of the PRF. Again, we do not provide details here, but refer the reader to the well-written paper [2] which describes the CBC-MAC and gives a full proof.

Hash-and-MAC. This scheme is not used in practice, but variants (i.e., UMAC) are. But the real reason for presenting this scheme is to introduce the notion of collision-resistant hash functions, a useful cryptographic primitive that will come up again later in the course.

Assume a hash function $H : \{0,1\}^* \rightarrow \{0,1\}^n$ that compresses arbitrary-length inputs to an n-bit output. We say that x, x' represents a collision for H if $x \neq x'$ but $H(x) = H(x')$. Informally, H is collision-resistant if it is “infeasible” to find a collision for H; more formally:

Definition 1 (Informal) H is (t,ϵ)-collision resistant if for all A running in time at most t, we have:

$$\Pr[(x, x') \leftarrow A : x \neq x' \land H(x) = H(x')] < \epsilon.$$
We note that the above definition would need to be adapted to give a rigorous, complexity-theoretic definition of collision-resistance, but we do not give such a definition in this course.

Collision-resistant hash functions are very useful, and have many applications. Interestingly, collision-resistant hash function are the first primitive we have seen so far that cannot be constructed from an arbitrary one-way permutation (this statement is slightly informal; ask me if you are interested in the exact statement of this result). All other primitives we have seen thus far — encryption, PRGs, PRFs, PRPs, message authentication — can be constructed based on any one-way function. Yet collision-resistance seems to be a strictly stronger assumption than one-wayness.

On the other hand, collision-resistant hash functions can be constructed based on specific assumptions such as RSA, hardness of factoring, and hardness of computing discrete logarithms. From a practical point of view, there are many efficient constructions of (what are believed to be) collision-resistant hash functions; the most well-known of these are SHA-1 and MD5. The situation here is analogous to that of PRFs: we know how to construct PRFs from any one-way function but in practice we use block ciphers like DES or AES which we believe make good PRFs.

References
