
University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 8

1 A One-Way Permutation Equivalent to Factoring

Recall the theorem we wanted to prove from last time:

Theorem 1 (Informally:) The squaring permutation is hard to invert (i.e., one-way) if
and only if factoring is hard.

As a historical note, the squaring permutation is also known as the Rabin permutation after
Michael Rabin, who first noticed (in 1979 — one year after RSA was introduced) that the
one-wayness of this function was equivalent to hardness of factoring.

Proof Let’s first show the easy direction: that that squaring permutation1 fN : QRN →
QRN cannot be hard to invert if factoring is easy. If factoring is easy, we have the following
algorithm for inverting fN : on input y ∈ QRN , first find the factors p, q of N . Then
compute the Chinese remaindering representation (yp, yq) of y. Find a square root xp of yp

modulo p and a square root xq of yq modulo q (recall we mentioned that for p prime, it is
known how to efficiently compute square roots in

�
∗

p). Then (xp, xq) is a square root of y
(verify this!).

We now turn to the more difficult direction. As we mentioned at the end of the last
lecture, we will take any algorithm that can invert fN and use it to factor N . Since this is
our first proof of this sort, we will give some more detail about what it is that we will actually
prove. Our aim is to show that if we have an efficient algorithm A that can invert fN (that
is, can compute square roots in QRN ), then we can build another efficient algorithm A′

that can factor numbers. Note there are two components to the proof: we need to construct
an algorithm A′ that factors numbers (given an arbitrary algorithm A that inverts fN ) and
we also need to ensure that our construction is efficient; that is, that A′ runs in polynomial
time (assuming that A runs in polynomial time).

More formally, assume we have an efficient algorithm A such that:

Pr[N ← CompositeGen(1k); y ← QRN ; z = y2;x← A(z,N) : x2 = z] > ε(k), (1)

for some (arbitrary) function ε(k). A bit about the notation: recall that “←” refers to
the output of a random process, while “=” either means (on the left side of the colon) to
assignment or (on the right side of the colon) to equality (i.e., are these two things equal?).
In the above notation, CompositeGen refers to some algorithm which, on input 1k, outputs
a k-bit composite number which is a product of two distinct primes. (Typically, it will be

1Note: we assume here that f is a permutation (and thus N = pq where p = q = 3 mod 4; see the notes
for Lecture 7) for convenience only. In fact, hardness of inverting f is equivalent to hardness of factoring
even when f is not a permutation.

1



the product of two k/2-bit primes, but the workings of the algorithm are actually irrelevant
here.) We stress that the nature of CompositeGen is irrelevant to the proof of security, so
let’s for now just assume we have such an algorithm as a black box.

We want to show how to use A to construct an efficient algorithm A′ for which:

Pr[N ← CompositeGen(1k); (p, q)← A′(N) : pq = N ] > ε′(k), (2)

where ε′(k) will be related in some way to ε(k). In words: A′ will be given a random value
N output by CompositeGen, A′ will output p, q, and the probability that pq = N (where
this probability is taken over the entire experiment) is at least ε′(k). For our proof, we
will want it to be the case that if ε(k) is not negligible, then ε′(k) will not be negligible
either. Hence, if there exists an efficient algorithm A satisfying (1) with ε(k) not negligible,
then there exists an efficient algorithm A′ satisfying (2) — but this violates the factoring
assumption! (Note: whether or not this actually violates the factoring assumption depends
on our definition of CompositeGen. So what we are really assuming is that there is some
algorithm CompositeGen for which factoring the output of CompositeGen is hard.)

Before we present the actual algorithm, we first give the following lemma:

Lemma 1 Given two elements x, y ∈
�
∗

N such that x2 = y2 mod N and x 6= ±y, one can
efficiently factor N .

The proof of this lemma is quite simple. Given that x2 = y2 mod N , we have:

x2 − y2 = (x− y)(x + y) = 0 mod N,

and furthermore x−y 6= 0 mod N and x+y 6= 0 mod N (why?). Since N divides (x+y)(x−
y) but does not divide either of (x + y) or (x − y), it must be the case that gcd(x + y,N)
gives a non-trivial divisor of N (and the gcd can be computed efficiently). Since N is the
product of two primes, we are done.

Our algorithm A′ will work as follows: On input N , choose a random y ∈
�
∗

N and
compute z = y2 mod N . Run A(z,N) to get output x. if x2 = z and x 6= ±y, use Lemma
1 to factor N . Otherwise, simply give up.

How can we represent the success probability of our algorithm? Note that, because of
Lemma 1, our algorithm succeeds exactly when x2 = z and x 6= ±y. So,

Pr[N ← CompositeGen(1k); (p, q)← A′(N) : pq = N ] =

Pr[N ← CompositeGen(1k); y ←
�
∗

N; z = y2 mod N ;x = A(z,N) : x2 = z ∧ x 6= ±y].

Let us represent the entire experiment to the left of the colon (in this last expression) by
Expt. Conditioning (using basic probability) gives:

Pr[Expt : x2 = z ∧ x 6= ±y] = Pr[Expt : x2 = z] · Pr[Expt : x 6= ±y|x2 = z].

We now make the following two crucial observations. First, we can rewrite Pr[Expt : x2 = z]
as follows:

Pr[Expt : x2 = z]
def
= Pr[N ← CompositeGen(1k); y ←

�
∗

N; z = y2 mod N ;x = A(z,N) : x2 = z]

= Pr[N ← CompositeGen(1k); y ← QRN ; z = y2 mod N ;x = A(z,N) : x2 = z],

2



where this is true because the distribution on z is exactly the same regardless of whether we
first pick y from

�
∗

N or from QRn (why?), and furthermore y does not appear any further
in the experiment or in the event itself. Now, by assumption we have

Pr[N ← CompositeGen(1k); y ← QRN ; z = y2 mod N ;x = A(z,N) : x2 = z] > ε(k)

(compare to (1)).
The second observation we make is that Pr[Expt : x 6= ±y|x2 = z] = 1/2. Why is this

true? Well, one way to see it is that algorithm A has no idea whatsoever which of the four
square roots of z were picked by A′. So no matter what A does, as long as it outputs a
value x which is a square root of z, then with probability 1/4 we will have x = y and with
probability 1/4 we will have x = −y. And with probability 1/2 we will have x 6= ±y.

Putting everything together gives:

Pr[N ← CompositeGen(1k); (p, q)← A′(N) : pq = N ] > ε(k)/2.

In particular, if ε(k) is not negligible, then neither is the success probability of our algorithm
A′ in factoring N . But this would violate the factoring assumption! So, we conclude that
ε(k) must be negligible after all.

I presented the above proof in excruciating detail. As you become more familiar with
these types of proofs, they become much easier to read (and hence much shorter).

3


