CMSC 858K — Advanced Topics in Cryptography March 2, 2004

Lecture 11

Rengarajan Aravamudhan

Lecturer: Jonathan Katz Scribe(s): Nan Wang

1 Review of the Cramer-Shoup Encryption Scheme

At the beginning of this lecture, we reviewed the proofs of security for both the Cramer-
Shoup “lite” and the full Cramer-Shoup schemes. However, rather than repeating the proofs
here, we instead refer the interested reader to the previous lecture notes.

2 NIZK Proof Systems

Previously in the course, we have seen the Naor-Yung and Dolev-Dwork-Naor encryption
schemes, both of which rely on adaptively-secure non-interactive zero-knowledge (NIZK)
proof systems. In the next few lectures, we will see how to construct such proof systems.
Our discussion is drawn from the work of Feige-Lapidot-Shamir [7, 3, 2, 4] and is also based
on [5, Section 4.10]. We define both “non-adaptive” NIZK and adaptively-secure NIZK.
Although we need adaptively-secure NIZK for our applications, non-adaptive NIZK will be
useful toward developing intuition for the problem.

Definition 1 ((Non-Adaptive) NIZK) A pair of PPT algorithms (P, V) is an NIZK proof
system for a language L € NP if, for some polynomials p1, po:

~ (Completeness) For all = € L N {0,1}<P**) and witness w for z,
Pr[r — {0,1}72); v — P(1* r 2, w) : VAF, 12, m) = 1] = 1.
We say 7 is valid proof for x (assuming k, r are clear from context) if V(1¥,r,z,7) = 1.
— (Soundness) For all (even unbounded) P* and all = ¢ L, the following is negligible:
Pr[r — {0,1}72); 0 — P*(r,) : VAF, 7,2, 7)) = 1].

— (Zero-Knowledge) There exists a PPT simulator Sim such that the following two
ensembles are computationally indistinguishable for all PPT A:

{(w,w) = AWF)r — {0,120 = POF 7 w) : (12, m)})
{(z,w) — A(1*); (r,7) — Sim(1*, z) : (r,z, 7)}.
(We require that A(1%) output (z,w) with z € LN{0,1}<P**) and w a witness for .)

&

The following definition strengthens the previous one in two ways: first, soundness
holds even when the (cheating) P* chooses x ¢ L after seeing the random string r (i.e.,

11-1

adaptively). Second, the zero-knowledge property holds even when the simulator learns x
after fixing its simulated random string r (in particular, the zero-knowledge property holds
even if an efficient adversary chooses x after seeing the simulated random string).

Definition 2 (Adaptively-Secure NIZK) A pair of PPT algorithms (P, V) is an adaptively-
secure NIZK proof system for a language L € NP if, for some polynomials p1, pa:

— (Completeness) As before. Again, we say 7 is a valid proof of x (assuming k,r are
clear from context) if V(1¥,r, 2, 7) = 1.

— (Adaptive Soundness) For all (even unbounded) P*, the following is negligible:

Prjr — {0,1}72®); (z,7) — P*(r) : V(¥ 7z, m) = 1Az ¢ L).

— (Adaptive Zero-Knowledge) There exists a PPT simulator (Simy, Simg) such that
for all PPT adversaries A the following are computationally indistinguishable:

{r = {0,1372W; (z,w) — A(L*,r); 7 — P(F,r 2, w) ¢ (rym, 7))}

{(r,state) «— Sim;(1%); (z,w) — A(1*,r);m — Simy(1*, z, state) : (r,z, 7)},

where we require that A(1¥,-) output a pair (z,w) with 2 € LN {0,1}=P1*) and w a
witness for x.

&

We note that it is easy to transform any NIZK proof system into one achieving adaptive
soundness as follows: Let (P, V) be an NIZK proof system satisfying “non-adaptive” sound-
ness. Assume for simplicity that pi(k) = k, and let Bad, = LN {0,1}=F. Soundness implies
that for any fixed x € Badg, the probability over random choice of r that there exists a
valid proof 7 for z is negligible, and in particular less than 1/2. (We assume that)V simply
rejects if the statement z is longer then pq(k)). Consider the modified protocol (P’,)V")
using a random string of length 2k - po(k) (where po(-) is the length of the random string
used by (P,V)). The prover P'(1% v/, x,w) parses the given random string 7’ as 2k strings
T1,...,T9, and runs P(lk, i, T, w) using each of these strings to generate proofs 71, ..., mog.
The verifier V' accepts only if all of these proofs are valid (with respect to V).

It is not hard to see that completeness and (non-adaptive) zero-knowledge are unaffected
by this transformation. We now bound the probability, over random choice of common
random string 7/, that there exists an x € Bad, and a valid proof # = 7wy,...,m, for z. For
any fixed x € Bady, a simple probability calculation shows that the probability, over r’, that
there exists a valid proof for z is at most 272%. In other words, for any given x € Bad;, at
most a fraction 272% strings r’ are “bad” for this . Then summing over all 2*! strings in
Bad), shows that at most a fraction 2-*+1 strings r’ are “bad” for some z € Badj. In other
words, the probability of such a “bad” 7’ is at most 2-%*1, which is negligible.

We remark that it is unknown how to convert an arbitrary NIZK proof system into one
achieving adaptive zero-knowledge. However, we will see a specific construction that works.
Let us briefly outline the next few lectures:

11-2

e We first introduce the “hidden-bits” model and show that any NIZK proof system
in this model can be transformed to an NIZK proof system in the real model (i.e.,
where a common reference string is available) assuming the existence of trapdoor
permutations.

e We then show how to construct an NIZK proof system in the “hidden-bits” model.
Coupled with the previous result, this yields a construction of an NIZK proof system
in the real model.

e Finally, we note that the construction above actually achieves adaptively-secure NIZK
without any further modification.

3 The Hidden-Bits Model

Informally, an NIZK proof system in the hidden-bits model proceeds as follows: the prover
is initially given some sequence of bits which are hidden from the verifier. In the course
of proving that x € L, the prover can choose to reveal some arbitrary set of these bits to
the verifier. The verifier never learns the bits of the string that are not revealed to it by
the prover, and the prover cannot cheat and change the values in the string it is given.
Formally, we imagine that the prover is given a string r of length n and sends to the verifier
(along with other information) a set of indices I C [n] (where [n] = {1,...,n}). The verifier
is then given the bits {r; };cs, which we denote by r;. We stress that the hidden-bits model
is not meant to be a realistic, but is instead only a conceptual model useful as a step toward
our ultimate goal. The full definition follows.

Definition 3 (NIZK in the Hidden-Bits Model) A pair of pPPT algorithms (P, V) is an
NIZK proof system in the hidden-bits model if, for some polynomials p1, pa:

— (Completeness) For all z € LN {0,1}<P**) and witnesses w for z:

Prir — {0,137%; (m, 1) — P(F vz, w) : VAP, rpwym I) = 1] = 1,

— (Soundness) For all (unbounded) P*, the following is negligible:
Prr — {0,1}72®); (&, 7w, I) — P*(r) : V(¥ 7y, 2, m, 1) =1 Az ¢ L).

— (Zero-Knowledge) There exists a PPT simulator Sim such that the following are
computationally indistinguishable for all PPT A:

{(z,w) = AQ")ir {0,120 (2, 1) PO 1,2, w) < (rp o, m, D
{(z,w) — AQ*); (rp, 7w, 1) — Sim(1*, z) : (r, 2,7, 1)}
(We require that A(1%) output (z,w) with z € LN{0,1}=P1(*) and w a witness for z.)
¢

We now show how to transform any NIZK proof system in the hidden-bits model to an
NIZK proof system in the model where there is a common random string available to the
players. The transformation is secure assuming the existence of any trapdoor permutation
family. (See [6, Appendix C] for further details on necessary assumptions.)

11-3

Theorem 1 Assuming the existence of trapdoor permutations and any NIZK proof system
(P',V") in the hidden-bits model, we may construct an NIZK proof system (P,V) in the
common random string model.

Proof We first show the construction, and then prove that the construction works as
claimed. We use the following notation for our trapdoor permutation family': algorithm
Gen(1¥) is a randomized algorithm which outputs a pair of (efficiently computable) functions
(f, f~1) where f~1 is called the “trapdoor” for f. Furthermore, f is always a permutation
over {0,1}* and f~1(f(z)) = z for all z € {0,1}*. We also assume that the set of “legal”
f’s (i.e., those that can possibly be output by Gen) is efficiently decidable.? Finally, we let
h denote a hard-core bit for this trapdoor permutation family. Formally, this means that
for all PPT algorithms A the following is neglible:

P [(7.£7) < Gen(1)a o {0.13¥5 = 1) A%, 1) = i) - 5

We also assume that h(z), for randomly-chosen x, gives an perfectly unbiased bit (this is
not essential, but it makes the proof slightly easier).

We make the following additional assumptions without loss of generality. First, we
assume that the random string used by Gen(1*) has length k, and hence the maximum
number of different f’s that can be output is 2¥. We also assume that the soundness error
of (P',V') (i.e., the probability that a cheating P* succeeds in giving a valid proof for some
x & L) is at most 272*. Using the technique shown earlier in these notes, if (P’,V’) does not
satisfy this condition we may construct a new NIZK proof system (still in the hidden-bits
model) that does satisfy this condition by running 2k copies of (P’,V’) in parallel.

Let n = po(k) refer to the length of the string 7’ given to P’ in the hidden-bits model
for security parameter k; we simply write n when k is clear from context. In the common
random string model, we let the string r shared by P and V have length k- n. Given a
common string r = |- - - |r,, where each r; € {0,1}*, the prover and verifier proceed as
follows:

1. P(1*,r, x,w) runs Gen(1¥) to obtain (f, f~1). It then computes an n-bit string r’ by
setting 7/ = h(f~1(r;)) (here, 7} simply denotes the i" bit of 7).

2. P then runs P’'(1%, 7/, 2, w) to obtain 7, I. Finally, P outputs f,, I, and {f = (r;) }ier.

3. V(¥ 7z, (f, 7, I,{z}icr)) proceeds as follows: it first checks that f is valid (here is
where we use the fact that the set of f’s generated by Gen is efficiently decidable).
For each i € I, it checks that f(z;) = r; (if any of these fail, then V outputs 0). Next,
it sets 7/ = h(z;) for each i € I. Finally, it outputs V'(1%,7}, z, 7, I).

The intuition is as follows: assume for a moment that the prover honestly generates (f, f ~1)
at random, independent of r. Then the string 7’ constructed by the prover is uniformly
distributed (to see this, note that once f~1 is fixed independent of r then r} = h(f~1(r;))

! Again, see [6, Appendix C] for more careful treatment of what assumptions are necessary.
2This assumption is necessary for the construction given below. However, it is possible to remove this
assumption using a more complicated construction [1].

11-4

is an unbiased bit for each i). Having the prover send z; = f~(r;) to the verifier has the
effect of “revealing” the i bit of 7 to the verifier; also once f~! is fixed the prover cannot
“cheat” by changing the value of r. (since the verifier will check that f(z;) = r; before
computing r; = h(z;), and the inverse of r; under f is unique). Finally, at least informally,
the bits of 7' that are not revealed by the prover to the verifier remain “hidden” by the
security of f~! and its associated hard-core bit h.

It is immediate that (P,V) satisfies completeness. Next, we prove the soundness of
(P,V). Say that P* cheats if it outputs a valid proof for some x ¢ L. First consider any
fixed (f, f~!). By what we have said above, the string r’ generated using this pair will be
uniformly distributed and hence the soundness of (P’,)’) implies that for any cheating P*
we have

Pr,.[P* can cheat using f] < 272

However, there is nothing to prevent P* from generating and using some (f, f~!) in a way
which depends on r! (For example, it is easy to construct a cheating prover that always
picks (f, f71) in such a way that r| = 0, say.) We now use the fact that the number of
possible (valid) f’s is at most 2%, and also that P* cannot send an invalid f to V without
being caught. Summing the above inequality over all possible f’s shows that:

Pr,[P* can cheat using any f] < 2F.272k =27k

which is negligible.
To complete the proof, we show a zero-knowledge simulator for (P, V). Let Sim’ be the
simulator for (P’,V’). We construct simulator Sim for (P, V) as follows:

Sim(1%, 2)

(rh,m 1) < Sim'(1%, z);

(f, £1) — Gen(1¥);
for i € I

zi {0, 1}* s.t. h(z) =7/
ri = f(2i);
fori ¢ I

r; «— {0, 1}F;
output (r, f, 7, I,{z }ier)

Intuitively, there are two differences between real proofs (given by P) and simulated
proofs (given by Sim): first, the simulated proofs use the simulator Sim’ for the original
proof system rather than the actual prover P’ for the original proof system. Second, the
values {r;};zr now define completely random bits {r}};z; in the underlying string r'; this
is not necessarily so for real proofs. However, a hybrid argument will show that the above
differences are inconsequential: the first due to the zero-knowledge of (P’,V’) and the second
due to the security of the trapdoor permutation family.

Formally, let A be a PPT algorithm. Our goal is to show that

{(ZL',UJ) — A(lk);r — {0, 1}’“'"; (f,m, I, {z}icr) < P(lk,r,m,w) : (r,x,f,w,],{zi}iel)} (1)
and

{(m,w) — A(lk)a (’l“, fvﬂ-ala {Zi}iel) N Slm(lkvl') : (’l",l’,f,ﬂ',], {Zi}iel)} (2)

11-5

are computationally indistinguishable (cf. Definition 1). We define an intermediate experi-
ment via an algorithm Hybrid as follows:

Hybrid (1%, 2, w)
r’—{0,1}";
(m, 1) «— P' (1%, ¢ 2, w);
(f,£71) — Gen(1¥);
fori e I:
2 {0, 1}* s.t. h(2) = 75
ri = f(z);
fori & I:
r; «— {0,1}F;
output <T7 f? T, I? {Zi}iel)

Claim 2 Assuming that (P',V') is an NIZK proof system in the hidden-bits model with
simulation Sim’, ensemble (2) is computationally indistinguishable from the following:

{(m,w) — A(lk); (ry fym, I, {2z bicr) < Hybrid(lk,x,w) (ryx, fym, 1, {Z,’}Z’e])}. (3)

Assume to the contrary that the claim is false. Then there is a PPT distinguisher D which
can distinguish between the two ensembles with probability that is not negligible. We
construct a D’ which violates the claimed security of Sim’ as a zero-knowledge simulator for
the proof system (P’,)’) in the hidden-bits model.

Let A output (z,w) as above. D’ is then given a tuple (7}, z, 7, I) (coming either from
the real prover P’ in the hidden-bits model, or from Sim’) and runs as follows:

D’(lk,r’l,x,ﬂ,l)

(f, f71) — Gen(1¥);

fori € I:
2+ {0,1}F s.t. h(z) = r!;
ri = f(z);

fori ¢ I
r; {0, 1}

output D(r,x, f, 7, I,{zi}icr)

One can check that if (77,2, 7, I) is distributed according to real proofs generated by P’,
then the input to D is distributed according to (3). On the other hand, if (r},z,m,I)
is distributed as the output of Sim’, then the input to D is distributed according to (2).
So the distinguishing advantage of D’ (in distinguishing real proofs generated by P’ from
simulated proofs generated by Sim’) is equal to the distinguishing advantage of D. But this
contradicts the zero-knowledge property of (P’,)V’) with respect to Sim’. O

Claim 3 Assuming that Gen defines a secure trapdoor permutation family, ensemble (1) is
computationally indistinguishable from ensemble (3).

Again, we prove this by contradiction. Assume to the contrary that there is a PPT distin-
guisher D which can distinguish between the two ensembles with a probability that is not

11-6

negligible. We then construct a D’ that violates the security of the trapdoor permutation
family. Before doing so, we note the following easy-to-prove fact. The security of Gen (and a
standard hybrid argument) implies that no PPT algorithm D’, given a randomly-generated
f, outputting a sequence of bits r{, ..., 7}, and receiving in return a sequence of k-bit values
r1,...,7¢, can distinguish between the case when each r; is randomly chosen in {0, 1}k and
the case when each r; is randomly chosen in {0, 1}* subject to h(f~'(r;)) = 7%

Define D’ as follows:

D'(1%, f)

(z,w) — A(1%);

r' {0,117

(m, 1)« P' (1%, v 2, w);

for i € I:

2+ {0,1}* s.t. h(z) =7l
ri = f(2i);

output r% and get back rp;

// note: for all 4, [r]| =1 and |r;| =k

output D(r,x, f,m,I,{z;}icr)

It is easy to see that in case the values r; are randomly chosen in {0, 1}*, then the input
to D is distributed according to (3). Though harder to see, it is also the case that when
the values 7 are randomly chosen in {0,1}* subject to h(f~'(r;)) = r! then the input
to D is distributed according to (1). To see this, note that in (1) r and f are chosen
(independently) at random and these are used to generate r’ by setting 7/ = h(f~*(r;)); on
the other hand, in the above experiment (when the case in question occurs) ' and f are
chosen (independently) at random and then r is chosen randomly subject to h(f ~1(r;)) = r’.
Thus, the distributions on (r, f,r’) are the same in both cases. Furthermore, these values
determine the remaining values in each experiment in the same way.

The above shows that the distinguishing advantage of D’ (in determining which case
occurs) is equal to the distinguishing advantage of D. But, as we have noted above, this

contradicts the security of the trapdoor permutation family. |
The above two claims complete the proof of the theorem via a standard hybrid argument.
|

References

[1] M. Bellare and M. Yung. Certifying Permutations: Non-Interactive Zero-Knowledge
Based on any Trapdoor Permutation. J. Crypto. 9: 149-166, 1996.

[2] U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. PhD Thesis, Dept.
of Computer Science and Applied Mathematics, Weizmann Institute of Science, 1990.
Available from http://www.wisdom.weizmann.ac.il/ " feige.

[3] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
Based on a Single Random String. FOCS, pp. 308-317, 1990.

11-7

[4] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
Under General Assumptions. SIAM J. Computing, Vol. 29, No. 1, pp. 1-28, 1999.

[5] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools, Cambridge University
Press, 2001.

[6] O. Goldreich. Foundations of Cryptography, vol. 2, to appear. Preliminary versions
available from Goldreich’s web page.

[7] D. Lapidot and A. Shamir. Publicly Verifiable Non-Interactive Zero-Knowledge Proofs.
Advances in Cryptology — CRYPTO ’90, pp. 353-365, 1990.

11-8

