
CMSC 858K — Advanced Topics in Cryptography March 18, 2004

Lecture 16

Lecturer: Jonathan Katz Scribe(s):
Chiu Yuen Koo
Nikolai Yakovenko
Jeffrey Blank

1 Digital Signature Schemes

In this lecture, we introduce the notion of digital signature schemes, show a construction of
a one-time signature scheme based on one-way functions in the standard model [4], and then
cover the full-domain-hash (FDH) signature scheme based on trapdoor permutations in the
random oracle model [1, 2]. We first define the semantics of a digital signature scheme.

Definition 1 A digital signature scheme consists of a triple of ppt algorithms (Gen,Sign,Vrfy)
such that:

• Gen is a randomized algorithm which, on input security parameter 1k, generates a
pair of keys: a public (verification) key pk, and a secret (signing) key sk.

• Sign, which may be randomized, takes as input a secret key sk and a message m, and
generates a signature σ. We write this as σ ← Signsk(m).

• Vrfy takes as input a public key, a message, and a (purported) signature; it outputs
a single bit b with b = 1 indicating acceptance and b = 0 indicating rejection. (We
assume for simplicity that Vrfy is deterministic.) We write this as b = Vrfypk(m,σ).

For correctness, we require that for all (pk, sk) output by Gen(1k), for all messages m, and
for all σ output by Signsk(m) we have Vrfypk(m,σ) = 1. ♦

Technically, one also has to specify a message space but this will be implicit in all the
schemes we discuss. We sometimes say a signature σ is valid (for a particular message m
and with respect to a particular public key pk) if Vrfypk(m,σ) = 1.

We now give a notion of security for digital signatures, following the definition first given
by [3]. The definition is a rather strong one: we allow an adversary (who is given the public
key) to repeatedly ask for signatures on multiple messages of his choice (this is referred to as
an “adaptive chosen-message attack”); the adversary succeeds if it can output a valid signa-
ture on any message of its choice which was not signed previously (this is called “existential
forgery”). Security requires that the success probability of any polynomial-time adversary
is negligible. This notion corresponds to security against existential forgery under adaptive
chosen-message attacks, and is essentially the strongest considered in the literature.1 One
can imagine weakening this definition in several ways; except for introducing the notion of
one-time signatures (below) we will not pursue this further here.

1Actually, a slightly stronger definition has recently been considered whereby the adversary succeeds

even if it outputs a signature σ on a previously-signed message, such that σ is valid but not identical to one

produced previously by the signer. Many schemes achieve this definition without further modification.

16-1



Definition 2 A signature scheme (Gen,Sign,Vrfy) is existentially unforgeable under an
adaptive chosen-message attack if for all ppt adversaries A, the following is negligible:

Pr[(pk, sk)← Gen(1k); (m,σ)← ASign
sk

(·)(pk) : Vrfy(m,σ) = 1 ∧m 6∈M ],

where M is the set of messages submitted by A to the Sign oracle. ♦

In other words, A is allowed to submit a polynomial number of message for signing. Even
based on these signatures, A should not be able to generate a signature on any message not
submitted to the oracle. We will also consider the following weaker definition of security
whereby A is only allowed to submit a single message to its signing oracle. Formally:

Definition 3 A signature scheme (Gen,Sign,Vrfy) is a secure one-time signature scheme if
for all ppt adversaries A, the following is negligible:

Pr[(pk, sk)← Gen(1k); (m,σ)← ASign
sk

(·)(pk) : Vrfy(m,σ) = 1 ∧m 6= m′],

where m′ is the single message that A submitted to its signing oracle. ♦

2 One-Way Functions

One-way functions are simply functions that are efficient to compute but hard to invert.
They form the minimal “hardness” assumption necessary for most of cryptography, includ-
ing symmetric-key encryption and digital signatures. We give a definition here tailored to
a “concrete” security analysis rather than an asymptotic one.

Definition 4 A polynomial-time-computable function f over domain Df is said to be
(t, ε)-one-way if for all adversaries A running it time t we have:

Pr[x← Df ; y = f(x);x′ ← A(y) : f(x′) = y] ≤ ε.

♦

As an informal example, one may conjecture that 2048-bit RSA is currently (5 years, 2−60)-
one-way (note that “RSA” does not quite fit into the above framework, but the definition
can be easily modified to accommodate it). This means that no adversary running in five
years can invert 2048-bit RSA (on a randomly-chosen challenge point, and for randomly
generated modulus) with probability greater than 2−60.

3 The Lamport One-Time Signature Scheme

We now show a one-time signature scheme based on one-way functions. Although not
very practical, this scheme is important for several reasons: (1) it illustrates that sig-
nature schemes (at least weak ones) can be constructed from one-way functions in the
standard model and do not require any sort of “trapdoor” as was initially believed; (2) the
scheme is used as a building block in the construction of many other schemes, including
“full-fledged” signature schemes secure against existential forgery against adaptive chosen-
message attacks. The scheme shown here was suggested by Lamport [4], and we describe it
for messages of length ` and using a one-way function f defined over domain {0, 1}k :

16-2



Gen(1k)

for i = 1 to ` and b ∈ {0, 1}:
xi,b ← {0, 1}

k

yi,b = f(xi,b)

pk
def
=

(

y1,0 · · · y`,0

y1,1 · · · y`,1

)

sk
def
=

(

x1,0 · · · x`,0

x1,1 · · · x`,1

)

output (pk, sk)

Signsk(m)

let m = m1 · · ·m`

with mi ∈ {0, 1}
let sk be as before
output (x1,m1

, . . . , x`,m`
)

Vrfypk(m,σ)

parse σ as (x1, . . . , x`)

if f(xi)
?
= yi,mi

for 1 ≤ i ≤ `
output 1

else output 0

Theorem 1 If f is (t, ε)-one-way (for some particular value of k) and requires time tf

to evaluate (in the forward direction), then no adversary running in time O(t − 2`tf ) can
“break” the one-time security of the scheme with probability better than 2`ε.

In particular, since ` and tf are polynomial in k, this means that if f is (asymptotically)
one-way then the Lamport scheme is (asymptotically) secure.

Proof Assume to the contrary that there exists an adversary A′ running in time t′ =
O(t − 2`tf ) and forging a signature with probability ε′ > 2`ε. We construct an adversary
A running in time t and inverting f with probability better than ε, a contradiction.

Define algorithm A (which gets a value y and tries to find an x ∈ {0, 1}k such that
f(x) = y) as follows:

A(y)

i∗ ← {1, . . . , `}; b∗ ← {0, 1}
yi∗,b∗ = y
for all i, b with 1 ≤ i ≤ ` and b ∈ {0, 1} and (i, b) 6= (i∗, b∗):

xi,b ← {0, 1}
k ; yi,b = f(xi,b)

pk =

(

y1,0 · · · y`,0

y1,1 · · · y`,1

)

run A′(pk) until it requests a signature on m = m1 · · ·m`

if mi∗ = b∗, abort; otherwise, return the correct signature to A′

eventually, A′ outputs a forged signature (x1, . . . , x`) on m′

1 · · ·m
′

`

if m′

i∗ 6= b∗ abort; otherwise, output xb∗

In words, A does the following: it first chooses a random index i∗ and a random bit b∗.
This defines a position in the public key at which A will place the value y that it wants to
invert. (Namely, A′ sets yi∗,b∗ = y.) The remainder of the public key is generated honestly.
This means that A can output a correct signature for any message m such that mi∗ 6= b∗.
Then, A runs A′ (giving A′ the public key that A prepared) until A′ requests a signature
on message m. As noted, A can generate a perfectly valid signature as long as mi∗ 6= b∗.
Otherwise, A simply aborts and gives up.

Assuming A has not aborted, it gives the signature thus computed to A′ and continues
running A′ until A′ returns a (supposed) forgery (x1, . . . , x`) on message m′

1 · · ·m
′

`. Con-
ditioned on the fact that A′ has not aborted, this is a valid forgery with probability ε′. A
valid forgery in particular means that f(xi∗) = yi∗,m′

i∗
and also that m′ 6= m. In this case,

if we also have m′

i∗ = b∗ then A has found an inverse for y (since yi∗,b∗ = y).

16-3



We now analyze the probability that A finds a correct inverse. This occurs as long as
the following three things happen: (1) A is able to return a correct signature to A ′ (i.e.,
mi∗ 6= b∗); (2) A′ outputs a valid forgery; and (3) the forgery satisfies m′

i∗ = b∗. The
probability of event (1) is 1/2 since b∗ was chosen at random, and is independent of the
view of A′ up to and including the point when it requests a signature on message m (this
follows since all entries yi,b [including yi∗,b∗ ] of the public key are computed by choosing
a random element xi,b from the domain of f and then setting yi,b = f(xi,b)). Conditioned
on the fact that event (1) occurs, the probability of event (2) is exactly ε′, the assumed
probability of forgery for A′. Finally, conditioned on the fact that events (1) and (2) both
occur, we must have m′ 6= m. So there exists at least one position i such that mi 6= m′

i.
If this i equals i∗ then we are done (since event (1) occurred we know that mi∗ 6= b∗ so
m′

i∗ = b∗). Since m′ is ` bits long and since the value of i∗ is independent of the view of A′

up to this point, i is equal to i∗ with probability at least 1/`.
Putting everything together, we see that A inverts f with probability 1

2 ·ε
′ · 1` = ε′/2` > ε.

Also, A runs in time (essentially) t′ + (2`− 1)tf < t. This contradicts the assumed security
of f , proving that A′ as described cannot exist.

4 Full Domain Hash (FDH)

As we have mentioned in passing previously, “full-fledged” signature schemes can be con-
structed from the minimal assumption of one-way functions (if you think about it, this
is quite an amazing result!). However, constructions based on general assumptions such
as one-way functions are not very practical. In fact, there is essentially only one known
construction of a secure signature scheme in the standard model which is practical. Thus,
we turn to the random oracle model to help us design efficient and provably-secure (albeit
with all the caveats of the random oracle model) scheme based on trapdoor permutations.
Before presenting the scheme, we define a concrete notion of security for the latter.

Definition 5 Let Gentd represent a generation algorithm for a trapdoor permutation family.
We say this family is (t, ε)-secure if for all adversaries A running in time at most t we have:

Pr[(f, f−1)← Gentd; y ← Df ;x← A(f, y) : f(x) = y] ≤ ε,

where Df is the domain/range of f (implicit in the description of f). ♦

We now describe the full-domain hash (FDH) signature scheme [1].

Gen(1k)

(f, f−1)← Gentd

let H : {0, 1}∗ → Df

pk = (f,H); sk = f−1

output (pk, sk)

Signsk(m)

output σ = f−1(H(m))

Vrfypk(m,σ)

output 1 iff f(σ)
?
= H(m)

It is not hard to see that correctness is satisfied. We now show that the scheme is secure if
H is modeled as a random oracle.

16-4



Theorem 2 If Gentd is (t, ε)-secure and f requires time tf to evaluate, then no adversary
running in time O(t − qh · tf ) can “break” FDH in the sense of existential unforgeability
under adaptive chosen-message attack with probability better than qh ·ε in the random oracle
model. Here, qh is a bound on the number of hash queries made by the adversary.

Again, since qh and tf are polynomial in the security parameter, this means that FDH is
asymptotically secure as well.

Proof Assume to the contrary that there exists an adversary A′ running in time t′ =
O(t−qh·tf ) that succeeds in breaking the scheme with probability ε′ > qh·ε. We construct an
adversary A running in time t and inverting f with probability better than ε, a contradiction.
We assume without loss of generality that (1) whenever A′ asks a query Signsk(m), it has
previously asked query H(m); (2) if A′ outputs alleged forgery (m,σ), it has previously
queried H(m) and has not previously queried Signsk(m); and (3) A′ never queries the same
value twice to H. Construct A (who tries to invert f at point y) as follows:

A(f, y)

choose i∗ ← {1, . . . , qh}
run A′(f), answering queries to H and Signsk as follows:
on the ith query mi to H:

if i = i∗ return y
else, xi ← Df and return yi = f(xi)

on query Signsk(m):

let i be such that m = mi

(i.e., m was the ith query to H)
if i = i∗ abort
otherwise, return xi

when A′ outputs (m∗, σ), find i such that m∗ = mi

if i 6= i∗ abort
else output σ

We make a number of observations about A. First, if A does not abort before A′

outputs its (supposed) forgery, then the simulation provided for A′ is perfect: all queries to
the random oracle are answered with a point in Df chosen independently at random (where
we use the fact that f is a permutation, and also the fact that y is chosen at random) and
all signing queries are answered correctly (since f(xi) = H(mi) be construction). Second,
if A does not abort during the course of the entire experiment that means m∗ = mi∗ and
hence if A′ has output a valid forgery we have f(σ) = H(mi∗) = y, and thus A succeeds in
inverting f at y. Finally, the running time of A is (essentially) t′ + (qh − 1)tf ≤ t.

It remains to analyze the probability that A does not abort. Note that A does not abort
whenever m∗ = mi∗ (since in this case A′ has also not queried Signsk(mi∗)). Furthermore,
the value of i∗ is information-theoretically hidden from A′ until such time (if any) that A
aborts. Since m∗ = mi for some i ∈ {1, . . . , qh}, the probability that m∗ = mi∗ is exactly
1/qh. The probability that A outputs a correct inverse is therefore ε′/qh > ε, giving the
desired contradiction.

16-5



4.1 An Improved Security Reduction Using RSA [2]

The proof in the previous section shows that FDH is asymptotically secure. In practice,
however, the concrete security bound derived may not be “good enough” (or, put another
way, achieving a reasonable level of security may not be “efficient enough”). For example,
say we set qh ≈ 250 which simply means that an adversary evaluates SHA-1 on their own
computer 250 times (this is a large, but perfectly reasonably, number). If we use a trapdoor
permutation which is (5 years, 2−60)-secure for sake of argument, say 2048-bit RSA), then
the proof given previously shows that an adversary running for 3 years. . . cannot forge a
signature in FDH with probability better than 250 · 2−60 = 2−10, which is not such a great
guarantee! Of course, we can always “fix” this by using larger moduli; for example, if
we assume that 4096-bit RSA is (5 years, 2−120)-secure then we achieve the acceptable
probability of forgery 250 · 2−120 = 2−70. In this case, however, our scheme will be less
efficient (since we are using a large modulus).

A natural question is: can we design a signature scheme with a better security reduction
(say, where the probability of forgery is roughly equal to the probability of inverting the
trapdoor permutation)? Or, can we improve our proof of security for the case of FDH?
Both of these problems have been considered, and we will focus on the second one here.
In particular, we will show that for the particular case when RSA is used as the trapdoor
permutation for FDH, a better security reduction can be obtained. (The technique relies
on some specific algebraic properties of RSA, and extends to other trapdoor permutations,
but not to all trapdoor permutations.)

Theorem 3 If the RSA trapdoor permutation (for some particular choice of key length) is
(t, ε)-secure and takes time tf to evaluate, then no adversary running in time O(t− qh · tf )
can “break” RSA-FDH with probability better than O(qs · ε) in the random oracle model.
Here, qs is a bound on the number of signature queries made by the adversary.

Note that this offers much better security since qs � qh (it is much harder to get a signer
to “obliviously” sign something for you than to evaluate a hash function repeatedly).

Proof Here, we let f = (N, e) be the RSA function (where the modulus N is generated
at random, and e is relatively prime to ϕ(N)). Assume to the contrary that there exists
an adversary A′ running in time t′ = O(t − qh · tf ) that succeeds in breaking the scheme
with probability ε′ > 3qs · ε. We construct an adversary A running in time t and inverting
f with probability better than ε, a contradiction. We assume without loss of generality
that (1) whenever A′ asks a query Signsk(m), it has previously asked query H(m); (2) if
A′ outputs alleged forgery (m,σ), it has previously queried H(m) and has not previously
queried Signsk(m); and (3) A′ never queries the same value twice to H or Signsk. We now
construct A (who tries to find y1/e mod N) as follows:

A(N, e, y)

run A′(pk = (N, e)), answering queries to H and Signsk as follows:
on the ith query mi to H:

xi ←
�
∗

N

with probability γ set bi = 0 and return xe
i mod N

otherwise (i.e., with probability 1− γ) set bi = 1 and return xe
i · y mod N

16-6



on query Signsk(m):

let i be such that m = mi

(i.e., m was the ith query to H)
if bi = 1 abort
otherwise, return xi

when A′ outputs (m∗, σ), find i such that m∗ = mi

if bi = 0 abort
else output σ/xi mod N

Here, γ is a parameter we will fix later. For future reference, note that the running time of
A is (essentially) t′+(qh−1)tf ≤ t (since an RSA exponentiation dominates multiplications
and other operations modulo N).

The hash queries of A′ can be divided into two classes: “class 0” (with b = 0) consists

of messages mi for which A knows xi
def
= H(mi)

1/e; thus, A can answer signing queries for
messages in this class, but if A′ forges a signature for a message in this class it does not
help A (since it already knows a “forged signature” for this message anyway). “Class 1”
(with b = 1) consists of messages for which A knows an xi such that xe

iy = H(mi); now, A
cannot answer signing queries for such messages, but if A′ forges a signature for a message
in this class then A can invert y as follows: if σ = H(mi)

1/e then:

σ/xi mod N = H(mi)
1/e/(xe

i )
1/e = (H(mi)/x

e
i )

1/e = y1/e;

i.e., σ/xi is the desired inverse of y.
Now, until such time (if any) that A aborts, the simulation provided to A′ is perfect (in

particular, all queries to the random oracle are answered with an independent and uniformly-
random point in

�
∗

N), and furthermore A′ has no information about which messages are in
class 0 and which are in class 1. Since the probability that A does not abort is given by the
product of the probabilities that (1) all the signing queries of A′ are for “class 0” messages,
and (2) the purported forgery of A′ is for a “class 1” message, the probability that A does
not abort is Pr[no abort] = γqs(1 − γ). Choosing γ = qs

qs+1 maximizes this expression and

gives Pr[no abort] = e−1/qs (where e ≈ 2.72 is the base of natural logarithms). Putting
everything together, the probability that A outputs a correct inverse is ε ′/(e ·qs) > ε, giving
the desired contradiction.

References

[1] M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm for Designing
Efficient Protocols. ACM Conference on Computer and Communications Security, 1993.

[2] J.-S. Coron. On the Exact Security of Full Domain Hash. Crypto 2000.

[3] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2): 281–308, 1988.

[4] L. Lamport. Constructing Digital Signatures from a One Way Function. SRI Interna-
tional Technical Report CSL-98 (October 1979).

16-7


