CMSC 858K — Advanced Topics in Cryptography May 4, 2004

Lecture 26
Lecturer: Chiu Yuen Koo Scribe(s): (none)

1 Introduction

In this lecture, we study the Byzantine Agreement problem, defined as follows: consider
a network of n processors, where each pair of processors can communicate (this is the
so-called “point-to-point” model). Furthermore, at most ¢ processors within this network
may be faulty; a faulty processor may exhibit arbitrary behavior. (We also assume that
the behavior of these faulty processors may be coordinated by a single adversary, and
sometimes do not place any computational restrictions on this adversary.) Initially, each
processor has an input value p;; this group of processors then runs a protocol which results
in each (non-faulty) processor deciding on a value p}. Besides requiring that the protocol
terminate, a Byzantine agreement protocol also satisfies the following (as long as no more
than t processors are faulty):

Agreement All non-faulty processors decide on the same value. L.e., if 4, j are non-faulty
then p; = p3.

Validity If the initial inputs of all non-faulty players are identical, then all non-faulty
players decide on that value. I.e., if p; = p* for all non-faulty players 4, then p} = p*
for all non-faulty players 3.

We remark that either one of these properties is trivial to achieve on their own (agreement
by having all non-faulty processors always output “0”, and validity by having each processor
i output p; = p;); the tricky part is to guarantee that they both hold in tandem.

The Byzantine agreement problem was first formulated by Lamport, Pease, and Shostak
[5, 3], and was motivated by fault-tolerant systems where a set of independent processors are
required to come to an exact agreement in presence of faulty processors. Examples include
synchronization of internal clocks or agreement on sensor readings. From a cryptographic
perspective, Byzantine agreement is a central primitive used within multi-party computation
protocols, where now a certain fraction of adversarial processors may be actively trying to
prevent agreement among the honest processors.

1.1 Broadcast

A broadcast channel is (as one might expect) a channel to which any player may send a
value which is then received by all other players (we also assume that players can tell which
player sent the value). Note that if a broadcast channel is available, then the Byzantine
agreement problem is trivial (for ¢ < n/2): each player simply broadcasts their value p; and
then honest players decide on the majority value. Unfortunately, most real-world systems
(at best) only guarantee “point-to-point” communication as we have described above.

26-1



However, it is worthwhile to consider broadcast as a functionality (rather than as simply
an atomic primitive); doing so, we come up with the following definition: Assume an n-party
network with point-to-point channels, as above. We now assume a distinguished party s
within this network, called the sender, who initially holds an input value ps. As before, we
will allow up to ¢ parties within the network (the dealer possibly included) to be faulty.
The processors in the network then run a protocol which results in each non-faulty player
deciding on a value p;. In addition to requiring that the protocol terminate, a broadcast
protocol also satisfies the following (as long as no more than ¢ players in total are faulty):

Agreement All non-faulty players decide on the same value; i.e., pj = p; for all non-faulty
i,].

Correctness If the dealer is honest, then all non-faulty players decide on p,. l.e., if the
dealer is non-faulty then p} = ps for all non-faulty players i.

(Note that broadcast may now be implemented by a protocol, rather than only by an atomic
“broadcast channel”.) We have noted above that if we can achieve broadcast and ¢ < n/2,
then we can achieve Byzantine agreement. In fact, the opposite direction also holds (for any
t, although as defined above Byzantine agreement is not meaningful when ¢ > n/2), as the
following protocol shows: first, the dealer sends his value ps to each other player (using a
point-to-point channel). Next, the players run a Byzantine agreement protocol and decide
on the result. It is not hard to see that agreement and correctness both hold.

Because of this equivalence, we are free to focus on either Byzantine agreement or
broadcast. In the remainder of this lecture, we focus on broadcast. A key results in this
area is the following, which we will prove in this and the next lecture:

Theorem 1 Broadcast (or Byzantine agreement) is possible iff t < n/3 (ort > n —1,
which is a trivial case). The possibility result holds even for computationally-unbounded
adversaries who coordinate the actions of all faulty players. The impossibility result holds
even for computationally-bounded adversaries (as long as the adversary is allowed to run
for essentially the same amount of time as honest processors), assuming no prior set-up
phase is allowed.

This result was first proved in [5]. A few comments are in order:

1. We have not yet said anything about protocol efficiency, and indeed the original
protocol for Byzantine agreement (when ¢ < n/3) ran in exponential time. Of course,
we ultimately want a protocol that runs in polynomial time. Since the initial work of
[5, 3], much further work has focused on constructing polynomial-time protocols, and
then optimizing the number of rounds/messages/etc.

2. The remark at the end of the theorem will be discussed later in the lecture. As a
preview, note that one possibility for a set-up phase is to assume a PKI such that
each player ¢ (including the faulty ones) has established a public/secret key pair
(PK;,SK;) for a digital signature scheme, with the same value PK; known to all
other players.

26-2



3. Other work in this area has focused on what can be achieved within different commu-
nication models (say, where a channel does not necessarily exist between every pair
of players, etc.).

2 The Impossibility Result

In this section, we prove the “only if” part of the theorem; i.e., we prove:

Theorem 2 Broadcast (and hence Byzantine agreement) is not achievable when the number
of faulty player t satisfies n —1 >t >n/3. (Note that t > n — 1 implies that the number of
honest players is at most 1, in which case the whole problem becomes trivial.)

Proof We first focus on the case n = 3, t = 1, and then prove the case for general n. Call
the sender s and label the two other players “1” and “2”. In the real network, each of these
players is connected with the other two. But imagine now that we make copies s’,1’,2’ of
each of these players and arrange them in a hexagon as follows:

s &« 1 & 2

I I

2 o 1 & 4

Now, assume toward a contradiction that we have some (possibly randomized) protocol P
for broadcast. This protocol completely specifies what each player s, 1,2 should do given its
initial input (in the case of s) and the messages it receives from the other parties. Consider
the case when the players above execute the protocol honestly, communicating as in the
diagram, but where s has input 0 and s’ has input 1. We claim the following;:

1. Let us look at things from the point of view of players 1 and 2. The key is to
realize that, from their perspective, the combined actions of s and s’ represent possible
adversarial activity of the sender s in the original network. (In particular, the “real”
sender s in the original, 3-player network can simulate the actions of 1/, 2/, s with
input 0, and s’ with input 1.) Furthermore, from this viewpoint players 1 and 2 are
acting completely honestly. Since, by assumption, P is a protocol for broadcast, we
must then have that 1 and 2 output the same value. Letting p; (resp., p2) represent
the output of player 1 (resp., 2), we then have p; = ps.

2. Now, look at things from the point of view of players s and 1. Here, the key is to
realize that, from their perspective, the combined actions of players 2 and 2’ represent
possible malicious activity of player 2 in the original network. (Again, a malicious
player 2 in the “real”, 3-player network can simulate the actions of 2,2’ s,s’.) But,
again, players s and 1 are acting completely honestly. Since P is a broadcast protocol,
it must be the case that player 1 outputs the initial input value of s. That is, p; = 0.

3. However, an exactly symmetric argument with respect to s’,2 shows that player 2
must output the initial input of s’; i.e., ps = 1.

The above give the desired contradiction (namely, we require p; = py but p; = 0 while
p2 = 1), showing that the claimed broadcast protocol cannot exist.

26-3



We now prove the claim for the case of n a multiple of 3 (although a small modification
of what we say extends to give a proof for arbitrary n). We do so by reducing in to the
case n = 3. Namely, we show that if there exists a broadcast protocol for n < 3t then we
can construct a broadcast protocol for n =3, t = 1.

So, assume we have a broadcast protocol P for n players (n a multiple of 3) and secure
against ¢ malicious parties, with ¢ > n/3. We assume for simplicity that player 1 is the
sender. Construct broadcast protocol P’ for n’ = 3 players 1/,2,3" as follows (again,
player 1’ will be the sender): The basic idea is that player 1’ will simulate players 1 through
n/3; player 2’ will simulate players n/3 + 1 through 2n/3; and player 3’ will simulate
players 2n/3 + 1 through n. In more detail, focusing on player 1’ (actions of players 2’
and 3’ are defined similarly): If player 1’ has input b, it runs player 1 (internally) with
input b. Whenever players i,j € [1,n/3] in protocol P want to send a message to each
other, player 1’ simply simulates this internally. When player ¢ € [1,n/3] wants to send a
message m to player j € [n/3 + 1,2n/3], player 1’ sends the message (i, j,m) to player 2.
When j € [2n/3+1,n], player 1’ sends a similar message to player 3. When player 1’ receives
a message (j,4,m) from player 2’ with j € [2n/3,n], player 1’ internally passes message m
to (internal) player ¢ “from” player j. When such a message comes from player 3', player 1/
acts appropriately. Players 2’ and 3’ output whatever is output (internally) by any of the
players they are simulating.

Assume P is secure for ¢ > n/3. We then claim that P’ is secure for t = 1. To see this,
note that the actions of any one compromised player in protocol P’ can be simulated by the
compromise of at most n/3 players in protocol P (namely, the n/3 players in P assigned
to the corrupted player in P’). Consider the case when 1’ is compromised in P’, and hence
players 1 through n/3 are compromised in P. Since agreement holds for P, we know that
players n/3 + 1 through n all output the same value, and so players 2’ and 3’ will output
the same value and agreement holds for P’. Next, consider the case when 2’ is compromised
in P’, corresponding to compromise of players n/3 + 1 through 2n/3 in P (the situation
is analogous when player 3’ is compromised). Since correctness holds for P, we know that
players 2n/3+ 1 through n output the initial input value of player 1. Since this latter value
is the same as the initial input value of player 1’, we have that player 3’ outputs the initial
input value of player 1’ and hence correctness holds for P’. |

In the next lecture, we will show a protocol for Byzantine agreement/broadcast for n
players and t < n/3 faulty players.

3 “Authenticated” Broadcast

We now return to the remark about circumventing the impossibility result proved above if
we allow an initial “set-up” phase. In particular, we will assume a PKI has been established
such that each player ¢ has a public-/secret-key pair (PK;, SK;) and (i, PK;) is known to
all other players. (We stress that every player holds the same PK; for player i—this
is crucial.) We will also assume a computationally-bounded adversary who cannot forge a
signature (with non-negligible probability) on any previously-unsigned message with respect
to the public key of any of the honest players.

It is worthwhile to see where the proof of the impossibility result from the previous

26-4



section breaks down in this case. Looking at the case n = 3, t = 1, we see that a crucial ele-
ment in the proof is the ability of corrupted players to simulate the actions of non-corrupted
players (for example, we required that a malicious s can simulate the actions of “honest”
1" and 2'). But when the players might sign messages (and we assume a computationally-
bounded adversary) it is no longer necessarily possible for corrupted players to simulate the
actions of honest players and the proof break down.

We now describe the Dolev-Strong protocol [1] for “authenticated” broadcast when a
PKI is established. Our description of the protocol is based on [2]. Again, we assume that
player 1 is the sender. We first introduce some notation: a message received by party j in
round i is called (v, 4)-authentic for j if it has the form (v,py,01,...,p;, 0;) where v € {0,1},
p1 = 1, all p; are distinct, j & {p1,...,pi}, and, for all i, the signature o; is a valid signature
with respect to PK,, of the string (v,p1,01,...,pi—1,0i—1). When j is clear from the
context, we simply call this a (v, 4)-authentic message. The protocol proceeds as follows:

Round 1: Party 1 signs its input v and sends (v,1,01) to all parties. (Note that when
player 1 is honest, this message is (v, 1)-authentic for all j # 1.)

Rounds 2 through n — 1: Each player j acts as follows in round i: for each v € {0,1},
if player j has received a (v,i — 1)-authentic message (v,p1,0p,,-..,Di—1,0i—1) in the
previous round, then it signs this message and sends (v,p1,0p,,...,Pi-1,0i—1,,0;)
to all other players.

(Each player sends at most 2 messages per round to all players—one for each possible
value of v—even if it has received many different (v,7 — 1)-authentic messages.)

Conclusion: Each party j decides on its output as follows:

If party j has ever received both a (0,i)-authentic message and a (1,i')-authentic
message, for any 7,7 < n—1, then it outputs the default value 0. (Note that when this
occurs the sender must be cheating [assuming the security of the signature scheme],
since it has issued signatures on two different values.)

If player j has ever received a (v,i)-authentic message for some i, but never received
a (,1")-authentic message for any ', then it outputs v.

If player j has never received a (v,i)-authentic message for any value of v, then it
outputs the default value 0. (Again, this situation implies that the sender must be
dishonest, since it was supposed to send an authentic message in round 1.)

We claim that the above is a secure broadcast protocol. Correctness is easy to see: if
the sender is honest and has initial input v, then every player receives a (v, 1)-authentic
message; assuming the security of the signature scheme, players will never receive a (v, 1)-
authentic message (since, in particular, this would require forging the signature of player 1)
and so all honest players will output v.

For agreement, consider some honest party j and assume j received a (v, 7)-authentic
message in some round ¢ < n — 1. There are two cases. If i <n — 1 then we claim that by
the following round, every honest party k will have received a (v,i')-authentic message for
some 7 < i+ 1. To see this, note that there are two sub-cases here: either k’s signature

26-5



is already included in the (v,i)-authentic message received by j or not. In the first case,
kmust have already received a (v,4’)-authentic message for some i’ < i (since otherwise it
would not have produced the signature contaned in the (v, 7)-authentic message received by
j)- In the second case, k will receive a (v,7 4 1)-authentic message from j in the following
round.

The other case is that ¢ = n — 1 and so j received a (v,n — 1)-authentic message in the
final round. In this case, the fact that this message is (v, n — 1)-authentic means that every
other player has signed this message, and so every honest player has already received a (v, 7)-
authentic message in some previous round (again, assuming the security of the signature
scheme so that signatures of honest players cannot be forged).

Putting this together, we have that if any honest player has received a (v, 7)-authentic
message by the end of the protocol, then every honest player has received a (v, ')-authentic
message by the end of the protocol. It is then clear that agreement holds.

References

[1] D. Dolev and H.R. Strong. Authenticated algorithms for Byzantine agreement. STAM
J. Computing 12(4):656-666, 1983.

[2] O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge Uni-
versity Press, 2004.

[3] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM Trans.
Program. Lang. Syst., 4(3): 382-401 (1982).

[4] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

[5] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of Faults.
J. ACM, 27(2): 228-234 (1980).

26-6



