
CMSC 858K — Advanced Topics in Cryptography February 10, 2004

Lecture 5

Lecturer: Jonathan Katz Scribe(s):

Rengarajan Aravamudhan
Morgan Kleene
Nan Wang
Aaron Zollman

1 Semantic Security May Not be Enough

The following trick can be played on the El-Gamal encryption scheme which, under the De-
cisional Diffie-Hellman Hypothesis (DDH) is semantically secure. We show how an attacker
can subvert a sealed-bid auction conducted using El-Gamal encryption, where the auction
is won by the bidder who submits the higher bid. Assume the auctioneer has public key
PK = (g, y = gx), and let the bid of the first bidder be m.

Bidder 1
C ← (gr, yr ·m)
(where r is random)

C=(C1,C2)
−→ Auctioneer decrypts m

Bidder 2
C ′ = (C1, C2 · α)
(where α = 2)

C′

−→ Auctioneer decrypts m′ = m · α

Although Bidder 2 has no idea what was bid (he doesn’t even know his own bid!), he is still
able to outbid bidder 1 by a factor of α.

The following system for verifying credit cards is also malleable. A user has a credit card
number C1, C2, C3, ..., C48 (where each Ci represents one bit) which is encrypted, bit-wise,
with the merchant’s public key pk and sent to the merchant as follows:

Epk(C1), Epk(C2), Epk(C3), ..., Epk(C48)

The merchant then immediately responds ACCEPT or REJECT, indicating whether the
credit card is valid. Now, an adversary need not decrypt the message to recover the credit
card: consider what happens if the first element of the above ciphertext is replaced by
Epk(0) (which an attacker can compute since the public key is available!) — if the message
is accepted by the merchant, the first bit of the credit card must be zero; if rejected, it is
one. Continuing in this way, the adversary learns the entire credit card number after 48
such attempts.

These two examples motivate the concept of malleability [4]. Informally, an encryption
scheme is malleable if, given an encryption C of some message M , it is possible to construct
a different ciphertext C ′ decrypting to some “related” message M ′. Non-malleability pre-
cludes the attacks shown above (in particular). Attacks that are thematically similar to
the ones given above have been implemented [2], although they are much more complicated
than the above examples.

This motivates the development of stronger notions of security preventing the above
attacks. It turns out that non-malleability is (for the cases of interest here) equivalent [1]

5-1



to a security property which is simpler to define called security against chosen-ciphertext
attacks. We may further consider security against non-adaptive chosen-ciphertext attacks
(CCA1) or security against adaptive chosen-ciphertext attack (CCA2); we define both of
these now.

Definition 1 [IND-CCA2] An encryption scheme is secure against adaptive chosen-
ciphertext attacks (CCA2) if the following is negligible for all ppt adversaries A:

∣

∣

∣

∣

Pr

[

(pk, sk)← KeyGen(1k); (m0,m1)← A
Dsk(·)(pk);

b← {0, 1}; c ← Epk(mb); b
′ ← ADsk(·)(pk, c)

: b = b′
]

−
1

2

∣

∣

∣

∣

where A cannot query Dsk(c). ♦

We note that for non-adaptive chosen-ciphertext attacks (CCA1) the adversary is only
allowed to query Dsk(·) in the first stage (i.e., before being given the ciphertext c).

2 Zero-Knowledge Proofs

Toward our eventual goal of designing encryption schemes secure against chosen-ciphertext
attacks, we define a class of exchanges for which it holds that one party is able to convince
another that he holds some information without revealing the information itself. We first
review what kinds of computation we consider feasible and then discuss the actual exchanges
that have been devised.

2.1 NP-Completeness

The kinds of computations that can be carried out efficiently are typically considered to
be those that can be done in polynomial time. We consider computational problems as
the recognition of a set of strings, referred to as a language. We say a Turing machine M
accepts a language L if: x ∈ L⇔M(x) outputs “accept”. We let a “1” signify acceptance.

There are two sets of computational problems which are of special importance. The
first is the set of languages that can be decided in polynomial time, denoted P . Formally,
a language L is in P if there exists a Turing machine M which takes at most p(|x|) steps
for some polynomial p (where |x| denotes the length of its input string x), and accepts if
and only if x ∈ L. The class NP is the set of languages for which there exist proofs of
membership that can be checked in polynomial time. Formally, a language L is in the class
NP if there exists a polynomial-time Turing machine M1 such that:

x ∈ L⇔ there exists a string wx s.t. M(x,wx) = 1.

A wx of this sort is called a witness for x. One can think of this as an efficiently-verifiable
“proof” that x ∈ L.

Intuitively, if we can use a solution to problem A to solve problem B it seems as if
problem A is in some sense “(at least) as hard as” problem B. This is formalized by the
notion of a polynomial-time reduction between two languages. We say that language L1 is

1By convention, the running time of a Turing machine taking multiple inputs is measured as a function

of the length of its first input.

5-2



poly-time reducible to language L2 if there exists a function f : {0, 1}∗ → {0, 1}∗ such that:
(1) f is computable in polynomial time, and (2) x ∈ L1 if and only if f(x) ∈ L2. We will
sometimes abbreviate this by writing L1 ≤p L2. Note that if L1 ≤p L2 and L2 ∈ P (i.e., L2

can be decided in polynomial time) then L1 can be decided in polynomial time using the
following algorithm: Given a string x, compute x′ = f(x) and then decide whether x′ ∈ L2.
Similarly, if L1 ≤p L2 and L2 ∈ NP then L1 ∈ NP as well.

There are languages which, in a certain sense, are “the hardest languages” in NP in
the sense that all problems in NP are poly-time reducible to them. These problems are
called NP complete. Note that if an NP -complete problem could be shown to be in P , then
all of NP would be in P , by the discussion above. A classic example of an NP -complete
language is satisfiability (i.e., given a boolean formula does there exist an assignment of
truth values to variables such that the formula evaluates to true). There are a variety of
other well-known NP -complete problems; the ones we will encounter in this class are:

• Hamiltonian Cycle: This is the lnaguage { G : G is a graph which contains a Hamilton
cycle }. (A Hamiltonian cycle is a cycle in which each vertex appears exactly once.)

• 3-colorability: This is the language { G = (V,E) : G is a graph and there exists a
function φ : V → {Red, Green, Blue} such that if {u, v} ∈ E, φ(u) 6= φ(v) }

Looking (way) ahead, we will eventually show a proof system for all of NP by showing a
proof system for a particular NP -complete language.

2.2 Non-Interactive Proof Systems

We first informally discuss the notion of an interactive proof system. Here we have a prover
P and a polynomial-time verifier V who both have some common input x, and the prover
wants to convince V that x ∈ L for some agreed-upon language L. The prover will attempt
to do this by interacting with the verifier in multiple communication rounds. Informally,
we would like that if x ∈ L then the prover can always make the verifier accept, while if
x 6∈ L then no matter what the prover does the verifier should reject with high probability.

We first give two trivial examples: we claim that all languages in P have an interactive
proof system with 0 rounds. Here, P does not communicate with V at all, but V merely
decides on its own whether x ∈ L (it can do this since L ∈ P ). Next, we claim that any
L ∈ NP has a 1-round interactive proof system in which P simply sends to V the witness
for x (assuming x ∈ L), and V verifies this. Note that the definition of NP implies that
V will always accept if x ∈ L (assuming P wants to make V accept) and that P can never
fool V into accepting if x 6∈ L.

Things get more interesting when we allow more rounds of interaction (and languages
outside of NP can be shown to have interactive proof systems), but this is for a class in
complexity theory. We will be more interested in strengthening the model of interactive
proofs so as to require also that V does not learn anything from interacting with the prover
other than the fact that x ∈ L. So far we have described a scheme that does not specify
what V may learn from the interaction. The below definition is motivated by the desire to
let V ascertain with high probability whether a particular string is in its language of interest
without actually learning anything about why it is in the language. To put it another way, V
should not learn anything from P that he could not have figured out himself. We formalize

5-3



this now for the case of non-interactive proofs (where there is additionally a common random
string available to both parties), and later in the course we will formalize it for interactive
proofs. See [3, 5] for more details.

Definition 2 A pair of ppt algorithms2 (P, V ) is a non-interactive zero-knowledge (NIZK)
proof system for a language L ∈ NP if:

Completeness For any x ∈ L (with |x| = k) and witness w for x, we have:

Pr
[

r ← {0, 1}poly(k);π ← P (r, x,w) : V (r, x, π) = 1
]

= 1.

In words: a random string r is given to both parties. P is given r, x, and the witness
that x ∈ L, and produces a proof π which he sends to V . The verifier, given r, x, and
π, decides whether to accept or reject. The above just says that if x ∈ L and everyone
is honest, then V always accepts.

Soundness If x /∈ L then ∀P ∗ (even all-powerful P ∗), the following is negligible (in |x| = k):

Pr
[

r ← {0, 1}poly(k);π ← P ∗(r, x) : V (r, x, π) = 1
]

.

Zero-knowledge There exists a ppt simulator S such that for all x ∈ L (with |x| =
k, the security parameter) and any witness w for x, the following distributions are
computationally indistinguishable:

1. {r ← {0, 1}poly(k);π ← P (r, x,w) : (r, x, π)}

2. {(r, π) ← S(x) : (r, x, π)}.

♦

The last condition restricts the information V may obtain from P . Intuitively, it says that if
V has “learned” anything from interacting with P he could also have learned it by himself,
using the polynomial-time simulator S.

References

[1] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of
Security for Public-Key Encryption Schemes. Crypto ’98.

[2] D. Bleichenbacher. Chosen Ciphertext Attacks Against Protocols Based on the RSA
Encryption Standard PKCS. Crypto ’98.

[3] M. Blum, P. Feldman, and S. Micali. Non-interactive Zero-Knowledge and its Applica-
tions. STOC ’88.

[4] D. Dolev, C. Dwork, and M. Naor. Nonmalleable Cryptography. SIAM J. Computing
30(2): 391–437, 2000.

[5] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge University
Press, 2001.

2Here, we require that P run in probabilistic polynomial time as well, since we are going to eventually

want to use P to construct efficient cryptographic protocols!

5-4


