
CMSC 858K — Introduction to Secure Computation October 11, 2013

Lecture 16

Lecturer: Jonathan Katz Scribe(s): Alex J. Malozemoff

1 Malicious Security, Continued

To finish off our discussion of malicious security, we mention some definitional variants.
Recall that an n-party protocol Π for computing some function f is t-secure if for all ppt
adversaries A corrupting t parties, there exists some expected polynomial-time simulator S
corrupting the same parties such that{

RealA,Π
x̄,z (1k)

}
x̄,z

c
≈

{
IdealS,fx̄,z (1k)

}
x̄,z
.

We have the following security variants:

• One-sided security (for two-party protocols): Malicious security only holds when a
specific party is corrupted (e.g., the evaluator in Yao’s 2PC protocol).

• Privacy-only: Protocol Π for computing some function f is t-private for malicious
adversaries if for all ppt adversaries A corrupting t parties, there exists some expected
polynomial time simulator S corrupting the same parties such that{

ViewA,Π
x̄,z (1k)

}
x̄,z

c
≈

{
OutputS,fx̄,z (n)

}
x̄,z
.

This is usually used in cases where the attacker gets no output.

2 Zero-knowledge Proofs

Let L be an NP-language, and let RL be a polynomial-time computable relation such that
∀x ∃w RL(x,w) = 1 ⇐⇒ x ∈ L. A zero-knowledge (ZK) proof for L is a two-party
protocol between a prover P and a verifier V , such that the following three conditions hold:

1. (Completeness): ∀x,w, RL(x,w) = 1 =⇒ 〈P (x,w), V (x)〉 = 1.

2. (Soundness): ∀x 6∈ L, ∀P ∗, Pr[〈P ∗(x), V (x)〉 = 1] ≤ ε(k). (Note that there are no
restrictions on the running time of P ∗.)

3. (Zero-knowledge): ∀ ppt V ∗ ∃ S running in expected polynomial time such that{
ViewV ∗

〈P (x,w),V ∗(x)〉(1
k)
}

(x,w)∈RL

c
≈ {S(x)}(x,w)∈RL

.

16-1



A zero-knowledge argument for L is equivalent to the above definition, except soundness
holds for all ppt P ∗ (instead of P ∗’s running time being arbitrary).

We now show a zero-knowledge proof for graph Hamiltonicity1. Since graph Hamiltonic-
ity is NP-complete, this implies that there exist zero-knowledge proofs for all languages in
NP.

Our zero-knowledge proof assumes the existence of a statistically binding and compu-
tationally hiding commitment scheme. We assume the reader is familiar with commitment
schemes; if not, see [Gol01, §4.4.1]. The existence of such a commitment scheme is implied
by one-way functions [Gol01, §4.4.1.3].

Zero-knowledge Protocol for Graph Hamiltonicity

P (G,w) V (G)

Let G′ be a random permutation
π of G. Let M ′ be the adjacency
matrix representation of G′, and
let com(M ′) be the commitment to
each entry in M ′.

com(M ′)
-

� b b
$← {0, 1}

If b = 0, let m be the decommit-
ment to all entries in M ′. If b = 1,
let m be the decommitment to the
Hamiltonian cycle in M ′.

m (and π if b = 0)
-

Check that m is a valid de-
commitment, outputting 1
if so and 0 otherwise.

Completeness is straightforward to show. For soundness, we have the following claim:

Theorem 1 If the commitment scheme com is statistically binding, then the above protocol
has soundness 1/2.

Proof This follows from the fact that the commitment scheme is statistically binding,
and thus cannot be broken. Thus, if P ∗ can answer correctly for both b = 0 and b = 1, then
G must have a Hamiltonian cycle.

Finally, we have the following theorem for the zero-knowledge property:

Theorem 2 If the commitment scheme com is computationally hiding, then the above pro-
tocol is zero-knowledge.

Proof Fix a ppt verifier V ∗. We construct a simulator S(G, z), which takes as input a
graph G and an auxiliary string z, as follows:

• Do the following at most k times:

1. Choose b
$← {0, 1}.

1See https://en.wikipedia.org/wiki/Hamiltonicity for a summary of the graph Hamiltonicity prob-
lem.

16-2



2. If b = 0, let M ′ be the adjacency matrix representation of a random permutation
of G, and send com(M ′) to V ∗.

3. If b = 1, let M ′ be the adjacency matrix representation of a random permutation
of an n vertex Hamiltonian cycle, and send com(M ′) to V ∗.

4. If V ∗ sends b′ = b, then open com(M ′) accordingly and output the transcript.

5. If V sends b′ 6= b, then repeat.

We claim that {S(G, z)}G,z

c
≈

{
ViewV ∗

〈P (x,w),V ∗(x,z)〉(1
k)
}
G,z

. We prove this via a hybrid

argument. Consider the following hybrid Hybrid(G,w, z):

• Do the following at most k times:

1. Choose b
$← {0, 1}.

2. Compute com(M ′) as in the real protocol and send it to V ∗.

3. If V ∗ sends b′ = b, then open com(M ′) accordingly and output the transcript.

4. If V sends b′ 6= b, then repeat.

Claim 3 {Hybrid(G,w, z)}G,z

c
≈

{
ViewV ∗

〈P (x,w),V ∗(x,z)〉(1
k)
}
G,z

.

Proof Because of the uniform choice of b, the probability that Hybrid never succeeds
is 2−k. Conditioned on succeeding, Hybrid is equal to View, and thus the above claim
holds.

Claim 4 {Hybrid(G,w, z)}G,z

c
≈ {S(G, z)}G,z.

Proof We prove this by reduction to the hiding property of the commitment scheme.
Let D be a distinguisher between Hybrid and S that succeeds with probability ε(k). Let
com(·, ·) be a “left-right” commitment oracle which returns either a commitment to its left
input or a commitment to its right input. Define an attacker Acom(·,·), which takes as input
a graph G, a witness w, and an auxiliary string z, as follows:

• Repeat k times:

1. Choose b
$← {0, 1}.

2. If b = 0 then commit to a random permutation of G as above.

3. If b = 1 then commit to the Hamiltonian cycle in a random permutation of G,
and then for all other indices in the adjacency matrix E input the pair (Ei,j , 0)
to the commitment oracle.

4. If V ∗ sends b′ = b, then open the commitments and run D on the resulting
transcript, and stop, outputting what D outputs.

• Output ⊥.

16-3



If com(·, ·) commits to the left input, then the transcript is distributed exactly as in Hybrid;
if com(·, ·) commits to the right input, then the transcript is distributed exactly as in S.
Thus, A succeeds in distinguishing the commitments with probability ε(k), and thus by the
assumed security of the commitment scheme it must be that ε(k) ≤ negl(k).

Thus, we have that {S(G, z)}G,z

c
≈

{
ViewV ∗

〈P (x,w),V ∗(x,z)〉(1
k)
}
G,z

, completing the proof.

References

[Gol01] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge
University Press, 2001.

16-4


