
Broadcast and Byzantine Agreement

Jonathan Katz∗

March 7, 2021

This note defines broadcast (and the related problem of Byzantine agreement), and presents
the fundamental feasibility and infeasibility results for constructing broadcast protocols among a
set of n parties in a synchronous network:

• With no prior setup, broadcast is possible when t < n/3 parties are corrupted.

• With no prior setup, broadcast is impossible when t ≥ n/3 parties are corrupted.

• If the parties have a pre-existing public-key infrastructure (PKI), then broadcast is possible
when t < n parties are corrupted.

Corrupted parties are malicious, and may behave arbitrarily. In all cases we assume a fully con-
nected network with authenticated channels between each pair of parties. We do not assume private
channels for the positive results; the impossibility result holds even with private channels. The pos-
itive results allow the adversary to adaptively corrupt parties (though in this case we caution the
reader that one can consider simulation-based definitions of security that are stronger than the
ones considered here [4, 3]); the impossibility result holds even for static corruptions.

1 Definitions

Protocols for broadcast allow a designated sender to transmit a message to all parties, such that all
parties are assured they receive the same message.

Definition 1 (Broadcast.) Let Π be a protocol executed by parties P1, . . . , Pn, where a sender
P ∗ ∈ {P1, . . . , Pn} begins holding input m ∈ {0, 1}∗ and all parties are guaranteed to terminate.
We say Π is t-secure if the following hold:

Validity: if P ∗ is honest and at most t parties are corrupted, all honest parties output m.

Consistency: if at most t parties are corrupted, all honest parties output the same value.

A related task is Byzantine agreement (BA). Here, all parties begin holding input, and the goal
is for the parties to reach agreement on their output.

Definition 2 (Byzantine agreement.) Let Π be a protocol executed by parties P1, . . . , Pn,
where each party Pi begins holding input vi ∈ {0, 1}∗ and all parties are guaranteed to terminate.
We say Π is t-secure if the following hold:

∗jkatz2@gmail.com. Department of Computer Science, University of Maryland.

1

Validity: if at most t of the parties are corrupted and every honest party’s input is equal to the
same value v, then every honest party outputs v.

Consistency: if at most t parties are corrupted, there is a v ∈ {0, 1}∗ such that every honest party
outputs v.

Note that BA only makes sense if t < n/2 (why?). On the other hand, broadcast is well-
defined for any t < n. When t < n/2, a protocol for broadcast immediately implies a protocol
for Byzantine agreement: each party broadcasts its input value (so the parties run n broadcast
protocols overall), and then parties output the majority value. Conversely, a protocol for Byzantine
agreement immediately implies a protocol for broadcast: the sender P ∗ sends its input m to each
party, and then the parties run a Byzantine agreement protocol where each party uses as input the
value it received from P ∗.

2 Feasibility of Broadcast without Setup

Assume t < n/3. Berman, Garay, and Perry [1] give a t-secure BA protocol for single-bit inputs
with polynomial complexity and optimal resilience. (This implies a t-secure broadcast protocol, as
noted earlier.) The protocol involves running the following phase-king subroutine t+ 1 times, with
parties P1, . . . , Pt+1 successively playing the role of the king.

Round 1 Each party Pi sends its input vi to all other parties.

Pi sets Cb
i := 1 (for b ∈ {0, 1}) if at least n− t parties sent it the bit b, and Cb

i := 0 otherwise.

Round 2 Each party Pi sends C0
i and C1

i to all other parties. Let Cb
i→j denote the relevant value

received by Pj from Pi.

Each party Pi sets Db
i :=

∣∣∣{j : Cb
j→i = 1

}∣∣∣. If D1
i > t, it sets vi := 1; otherwise, it sets vi := 0.

Round 3 The king Pk sends vk to all parties. Each party Pi then updates their input as follows:
If Dvi

i < n−t then set vi equal to the value the king sent to Pi; otherwise, leave vi unchanged.

We begin with two lemmas about the phase king (sub-)protocol.

Lemma 1 Let t < n/2, and assume all n − t honest parties begin the phase-king protocol holding
the same input v. Then all honest parties terminate the protocol with the same output v.

Proof Since all honest parties begin with input v, in the first round each honest party receives v
from at least n − t parties, and receives v̄ from at most t < n − t parties. So each honest Pi sets
Cv
i := 1 and C v̄

i := 0. It follows that in round 2, each honest Pi has Dv
i ≥ n − t > t and Dv̄

i ≤ t,
and so vi = v at the end of that round. Since Dvi

i = Dv
i ≥ n− t for an honest Pi, all honest parties

ignore the value sent by the king and terminate the phase-king protocol with output v.

Lemma 2 Let t < n/3. If the king is honest in an execution of the phase-king protocol, then the
outputs of all honest parties agree at the end of that protocol.

2

Proof An honest king sends the same value vk to all parties. So the only way agreement can
possibly fail to hold is if some honest party Pi does not set their input to the king’s value, i.e., if
Dvi

i ≥ n− t. We claim that if there exists an honest party Pi for which Dvi
i ≥ n− t, then vi = vk

and so agreement holds anyway. To see this, consider the two possibilities:

Case 1: vi = 1. Since D1
i ≥ n− t we have D1

k ≥ n− 2t > t, and so vk = 1 as well.

Case 2: vi = 0. The fact that D0
i ≥ n− t implies D0

k ≥ n− 2t > t. So at least one honest party Pj

sent C0
j→k = 1 to Pk, implying that at least n− t parties sent ‘0’ to Pj in round 1 and consequently

at most t parties sent ‘1’ to Pj in round 1. But then any honest party received a ‘1’ from at most
2t < n− t parties in round 1, and so any honest party Pi has C1

i = 0. It follows that each honest
party Pi, and Pk in particular, has D1

i ≤ t; we conclude that vk = 0 as desired.

Theorem 1 The above protocol achieves Byzantine agreement for any t < n/3.

Proof Say all honest parties begin holding the same input. Then Lemma 1 implies that none
of the honest parties ever changes its input value in any of the phase-king subroutines, and so in
particular all honest parties terminate with the same output.

In any other case, there must be at least one execution of the phase-king subroutine in which
the king is honest. Following that execution, Lemma 2 guarantees that all honest parties hold the
same input. Lemma 1 ensures that this will not change throughout the rest of the protocol.

The above protocol only allows the parties to agree on a single bit, however it can be extended
to allow agreement on an `-bit string by simply repeating the protocol (in parallel) ` times. In
fact, there is a more efficient conversion of binary BA to multi-valued BA that involves running
the binary BA protocol only once; we refer to the work of Turpin and Coan [7] for details.

3 Impossibility of Broadcast without Setup

We show the following classical result [6, 5]:

Theorem 2 If n ≥ 3 and t ≥ n/3 and the parties have no initial setup, there is no t-secure protocol
for broadcast (or BA).

Figure 1: Imaginary execution for the proof.

Proof We focus on the case n = 3, t = 1; the general case can be proved by reduction to that
case. Assume a 3-party broadcast protocol Π that is 1-secure, where P1 is the sender. Π is defined

3

by three algorithms P1, P2, P3 run by each of the parties, where in each round of the protocol a
party decides what messages to send (or whether to produce output and terminate) based on its
current state and the messages it received in the previous round.

Imagine connecting these algorithms as shown in Figure 1 and then letting them run the proto-
col. That is, we run P2 and P3 as well as two instances of P1—one with initial input 0 and the other
with initial input 1. (For the moment, ignore the shaded oval labeled ‘A.’) It is not immediately
clear what the result will be of connecting the parties in this way; nevertheless, P2 and P3 will
eventually terminate and output something. Let v2, v3 denote the outputs of P2, P3, respectively,
in some execution.

We first claim that v2 = v3. This is because we can consider a real-world execution of Π
among three parties in which an adversary A corrupts the sender (P1) and simulates the imaginary
execution in Figure 1. In detail: A runs two instances of P1 on inputs 0 and 1. When A receives
a message from P2 it feeds it to P1(0); when P1(0) outputs a message to be sent to P2 then A
sends that message to P2. Similarly, when A receives a message from P3 it feeds it to P1(1); when
P1(1) outputs a message to be sent to P3 then A sends that message to P3. When P1(0) outputs
a message to be sent to P3 then A sends it to P1(1) as if it came from P2; similarly, when P1(1)
outputs a message to be sent to P2 then A sends it to P1(0) as if it came from P3. The honest
P2, P3 cannot distinguish whether there are running the imaginary execution from Figure 1 or a
real execution of Π with the adversary described, and hence there is an execution in which they
output v2, v3. But consistency of Π implies that v2 = v3.

We can now repeat the above argument but with an adversary corrupting P3 in a real-world
execution of Π and simulating the two parties on the bottom half of Figure 1. Since the real sender
is honest in this real-world execution, validity of Π implies that P2’s output must be equal to P1’s
input, and hence v2 = 0. Reasoning analogously (but considering an adversary corrupting P2 and
simulating the two parties on the top half of Figure 1), we must also have v3 = 1. (You should
convince yourself that such adversarial behavior could actually be implemented.) But then v2 6= v3,
a contradiction.

4 “Authenticated” Broadcast

We now show a protocol for broadcast that is secure even if all-but-one of the parties are corrupted.
This does not contradict the impossibility result from the previous section because here we are going
to assume some prior setup among the parties in the form of a public-key infrastructure (PKI). In
particular we assume that each party Pi has generated a public/private key pair (pki, ski) and that
all parties hold the (same) vector of public keys (pk1, . . . , pkn). (We stress that every party holds the
same pki for player i—this is crucial.) We will also assume a computationally-bounded adversary
who cannot forge a signature (with non-negligible probability) on any previously-unsigned message
with respect to the public key of any of the honest parties. We denote signatures by σ, and assume
for simplicity that a signature includes the identity of the signer.

It is worthwhile to pause and think about where the impossibility proof from the previous
section breaks down in this case. A crucial element in the proof is the ability of corrupted players
to simulate the actions of non-corrupted players (for example, we required that a corrupted P2 could
simulate the actions of P1). But when the players sign messages (and we assume a computationally-
bounded adversary) then it is no longer necessarily possible for corrupted parties to simulate the
actions of honest parties and the proof breaks down.

4

We now describe the Dolev-Strong protocol [2] for multi-bit messages. Assume P1 is the sender.
We say a message received by a party P in round i is (m, i)-valid if it consists of the message m
along with valid signatures on m by P1 and i− 1 other parties (not including P itself); we say it is
m-valid if it is (m, i)-valid for some i ≥ 1. Each party Pj initializes Sj = ∅, and then the protocol
proceeds as follows:

Round 1: P1 generates a signature σ1 on its input m, sets S1 := {m}, and sends (m,σ1) to all
parties.

Rounds 2 through n− 1: Each party Pj acts as follows in round i:

• If |Sj | < 2: If Pj received an (m, i − 1)-valid message (m,σ1, . . . , σi−1) in the previous
round with m 6∈ Sj , it generates a signature σ on m, sends (m,σ1, . . . , σi−1, σ) to all
other parties, and adds m to Sj .

Pj does the above for at most 2− |Sj | values of m.

• If |Sj | = 2 then do nothing.

Conclusion: If party Pj received a (m,n− 1)-valid message in round n− 1, it adds m to Sj .

Pj then decides on its output as follows: If |Sj | 6= 1, output 0. Otherwise, let Sj = {m} and
output m.

We claim that the above is an (n− 1)-secure broadcast protocol. Validity is easy to see: if the
sender is honest and has input m, then every party receives an (m, 1)-authentic message in the first
round; by security of the signature scheme, parties will never receive an (m′, i)-authentic message
with m′ 6= m for any i and so all honest parties output m.

The key observation to prove consistency is the following lemma:

Lemma 3 If an honest Pj ever adds m to Sj, then every party P receives an m-valid message.

Proof If Pj adds m to Sj in some round i ≤ n − 1 this is immediate. (Note there are two
cases depending on whether P ’s signature is already part of the (m, i)-valid message Pj received.)
On the other hand, if Pj adds m to Sj at the conclusion of the protocol because it received an
(m,n−1)-valid message in the final round, then (by security of the signature scheme) P must have
signed m at some point, which means that P must have received an m-valid message.

Using the previous lemma it is possible to prove consistency as follows: Fix honest Pi, Pj . If
|Si| ≥ 2 then |Sj | ≥ 2, and so Pi, Pj both output 0. A similar argument applies if |Si| = 0. Finally,
if |Si| = 1 then |Sj | = 1 and Si = Sj , so Pi, Pj agree on their output.

References

[1] P. Berman, J. Garay, and K. Perry. Bit-optimal distributed consensus. In Computer Science
Research, pp. 313–322, Plenum Publishing Corporation, 1992.

[2] D. Dolev and H.R. Strong. Authenticated algorithms for Byzantine agreement. SIAM J. Com-
puting 12(4):656–666, 1983.

[3] J. Garay, J. Katz, R. Kumaresan, and H.-S. Zhou. Adaptively secure broadcast, revisited.
PODC 2011.

5

[4] M. Hirt and V. Zikas. Adaptively secure broadcast. Eurocrypt 2010.

[5] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans. Program.
Lang. Syst., 4(3): 382–401 (1982).

[6] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2): 228–234 (1980).

[7] R. Turpin and B. Coan. Extending binary Byzantine agreement to multivalued Byzantine
agreement. Information Proc. Lett. 18(2):73–76, 1984.

6

