Errata/Typos for “Introduction to Modern Cryptography, second edition”
(Last updated March 14, 2016)

Note: negative line numbers correspond to counting from the bottom of the page.

- Page 5, line 12: The reference to Figure 1.2 should be to Figure 1.1 instead.
- page 11, Figure 1.3: The percentage listed for the letter ‘o’ should be 7.5, not 1.5.
- page 102, Exercise 3.6(a): \(\lfloor n/2 \rfloor \) should be \(\lceil n/2 \rceil \).
- page 146, second displayed equation: \(K(m_0, t_0) \) should be \(K(t_0) \).
- page 149, Exercise 4.11: the question assumes that \(\Pi' \) is a secure MAC that uses canonical verification.
- page 150, Exercise 4.20: the question assumes that \(\Pi' \) is strongly secure.
- page 210: In the second and third paragraphs on that page, the roles of \(k_1 \) and \(k_2 \) were confused. These paragraphs should read as follows:

 A better attack is possible by noting that individual bits of the output depend on only part of the master key. Fix some given input/output pair \((x, y)\) as before. Now, the adversary will enumerate over all possible values for the first byte of \(k_1 \). It can XOR each such value with the first byte of \(x \) to obtain a candidate value for the input of the first \(S \)-box. Evaluating this \(S \)-box, the attacker learns a candidate value for the output of that \(S \)-box. Since the output of that \(S \)-box is XOR’d with 8 bits of \(k_2 \) to give 8 bits of \(y \) (where the positions of those bits depend on the mixing permutation and are known to the attacker), this yields a candidate value for 8 bits of \(k_2 \).

 To summarize: for each candidate value for the first byte of \(k_1 \), there is a unique possible corresponding value for some 8 bits of \(k_2 \). . . .

(The rest of the second paragraph is the same, exact that \(k_2 \) should be replaced with \(k_1 \).)

- page 237, Exercise 6.4: the attack in the text already considers \(S \)-boxes with 8-bit input. So the first part of the question should instead consider a block length of 64 bits and 16 \(S \)-boxes taking 4-bit input.
- page 255, line -12: \(A(x, r \oplus e^i) \) should be \(A(f(x), r \oplus e^i) \).
- page 358, Exercise 9.2: show instead that the algorithm outputs \(p \) with overwhelming probability.
• page 424, last line of Construction 11.36: \(\hat{m} \) should be \(m' \).

• page 459, line -9: \(h \) should be \(y \) (twice).

• page 460, line 3: \(\mathcal{G}m \) should be \(\mathcal{G} \).

• page 484, Exercise 12.5(c): the encoding should be \(\text{enc}(m) = 0^{\kappa/10}\|m\|0^{\kappa/10} \).

Thanks to Rolf Haenni, Ali El Kaafarani, Alejandro Mardones, Greg Plaxton, Christian Schaffner, and Jim Tallent for informing us about some of the above typos.