
20

Verifiable Graph Processing

YUPENG ZHANG and CHARALAMPOS PAPAMANTHOU, ECE Department,

University of Maryland, USA

JONATHAN KATZ, Department of Computer Science, University of Maryland, USA

We consider a scenario in which a data owner outsources storage of a large graph to an untrusted server; the

server performs computations on this graph in response to queries from a client (whether the data owner or

others), and the goal is to ensure verifiability of the returned results. Applying generic verifiable computa-

tion (VC) would involve compiling each graph computation to a circuit or a RAM program and would incur

large overhead, especially in the proof-computation time.

In this work, we address the above by designing, building, and evaluating Alitheia, a VC system tailored

for graph queries such as computing shortest paths, longest paths, and maximum flows. The underlying

principle of Alitheia is to minimize the use of generic VC techniques by leveraging various algorithmic

approaches specific for graphs. This leads to both theoretical and practical improvements. Asymptotically,

it improves the complexity of proof computation by at least a logarithmic factor. On the practical side, our

system achieves significant performance improvements over current state-of-the-art VC systems (up to a

10-orders-of-magnitude improvement in proof-computation time, and a 99.9% reduction in server storage),

while scaling to 200,000-node graphs.
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1 INTRODUCTION

Graph algorithms are everywhere. For instance, navigation systems run the Dijkstra or Floyd-
Warshall algorithms to compute the shortest route between two locations, and various problems
in transportation networks can be modeled as maximum-flow computations. In the era of cloud
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computing, however, the owner of a graph may not be the same entity running computations over
that graph. Specifically, a (trusted) data owner with small local memory might outsource storage
of a large graph to a server, who will then answer queries about the graph made by various clients.
The goal is to ensure verifiability of the returned results, thus protecting clients against bugs in
the server’s code, corruption of the data, or malicious behavior by the server.

Precisely this setting is addressed by early work on authenticated data structures [4, 36, 41], as
well as more recent work on the broader problem of verifiable computation (VC) [3, 5–10, 12, 14,
16, 17, 19, 20, 23, 25, 26, 28, 31, 38–40, 43, 44, 46]. Such schemes would enable a server to provide
cryptographic proof of correctness for a returned result, which can be verified by the client posing
the query.

There are several parameters of interest when it comes to VC protocols. Perhaps the main con-
cerns are that the size of the proof should be small (ideally, proportional to the size of the result
rather than the size of the graph), and the verification time should be low. This is particularly impor-
tant when proof verification might be done by resource-constrained clients such as smartphones.
(We stress, however, that in our setting solutions are interesting even if the verification time is
longer than the time to run the computation locally, since we are interested in outsourcing storage

rather than computation.) Other measures of interest include the time for the server to compute the

proof, the storage required by both the server and the clients, and the setup (i.e., preprocessing) time

required by the data owner.
A trivial solution is to have the data owner authenticate the graph, and then have the client

download/verify the graph and compute the result on its own; this solution, however, imposes
high bandwidth, storage, and computational costs on the client. Better VC protocols for graph al-
gorithms can be derived in principle using general-purpose VC schemes [9, 10, 12, 17, 25, 26, 34]
or one of the systems that have been built to apply these techniques [6–8, 14, 19, 38–40, 43, 44,
46]. Applying these general-purpose results to graph algorithms, however, does not yield practical
protocols. This is due to the fact that most of these systems require the computation being per-
formed to be represented as a (Boolean or arithmetic) circuit. For graph computations, however, a
circuit-based representation will not be optimal. A RAM-based representation would be preferable,
but existing RAM-based VC schemes [6–8, 14, 44, 47] are not yet practical (see below).

Our contributions. We design, build, and evaluate Alitheia, a system for nearly practical
verifiable computation on graphs. Currently, Alitheia handles shortest-path, longest-path, and
maximum-flow queries over weighted directed and undirected graphs (as applicable). The specific
contributions of Alitheia are as follows:

(1) On the theoretical side, Alitheia asymptotically reduces the preprocessing and proof-
computation times relative to the best previous approaches. For example, for shortest-
path queries in a graph with m edges, it saves a factor of O (logm) (see Section 3). (Note
that vRAM [47] was published subsequent to the proceedings version of this work.) For
planar graphs (i.e., graphs that can be drawn in the plane without edge crossings), we
show two schemes for verifying shortest paths. The first scheme reduces the number of
cryptographic operations needed for proof computation by a factor of O (

√
m); the sec-

ond scheme only reduces the asymptotic complexity by a logarithmic factor but is more
efficient than the first scheme in practice.

(2) On the practical side, Alitheia achieves significant performance improvements, bringing
VC for graphs closer to reality (see Section 5). Specifically, for shortest-path queries on a
planar graph with 100,000 nodes, the proof-computation time for our first scheme is 50s
and for our second scheme is only 0.1s. Compared to existing state-of-the-art approaches,
our scheme improves the running time of the server by a factor of 107–1010 and the server’s
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Table 1. Summary of Our Results and Comparison with Existing Approaches

for Verifying Shortest-path Queries

Libsnark [7] [44]
(circuit-based)

vRAM [47]
(RAM-based)

Buffet
(RAM-based)

Alitheia
general graphs

Alitheia 1
planar graphs

Alitheia 2
planar graphs

Setup O (nm) O (m) O (m log m) O (m) O (m
√

m) O (m
√

m)

Prover O (nm log m) O (m) O (m log2 m) O (m log m) O (
√

m log m) O (m)

Proof Size O (1) O (polylogm) O (1) O ( |p |) O (log m + |p |) O (log m + |p |)
Verification O ( |p |) O (polylogm + |p |) O ( |p |) O ( |p |) O (log m + |p |) O (log m + |p |)

Setup 12,000 hours∗ 19 hours∗ 10 hours∗ 69 minutes 4.1 minutes 2.8 seconds

Prover 1,000 hours∗ 9 hours∗ 5 hours∗ 3.3 minutes 13 seconds 0.0036 seconds

Proof Size 127 bytes 300 kilobytes∗ 288 bytes 704 bytes 3,872 bytes 1,940 bytes

Verification 0.0014 seconds∗ 0.11 seconds∗ 0.008 seconds∗ 0.19 seconds 0.592 seconds 0.03 seconds

For asymptotic results, we consider a planar graph with n nodes and m edges and let |p | denote the length of the shortest

path; reported complexities are for cryptographic operations. Experimental results refer to the (planar) road network of the

city of Rome (n = 3,353, m = 8,870, |p | = 13), taken from the 9th DIMACS implementation challenge for shortest paths [21].

Nodes in this graph correspond to intersections between roads, and edges correspond to road segments. Results marked

with ∗ are estimates due to memory limitations (see Section 6).

storage by 99.9%. Finally, Alitheia is the first VC system that can scale to 200,000-node
graphs.

In Table 1, we provide a detailed comparison of Alitheia with current state-of-the-art VC sys-
tems; specifically, we compare our schemes with Libsnark [7], a circuit-based VC scheme, as well
as Buffet1 [44] and vRAM [47], two RAM-based VC schemes.

Especially for planar graphs, Alitheia offers the best practical performance among all schemes.
Preprocessing time and proof-computation time are much improved, at the expense of a reasonable
increase in the proof size and verification time. Asymptotically, for general graphs, although the
proof size in Alitheia increases from O (1) to O ( |p |) (where p is the shortest path), the protocol’s
asymptotic bandwidth remains the same (i.e., O ( |p |)), since the actual path p must be communi-
cated to the client anyway. See Section 6 for further discussion.

Our techniques. We first briefly describe the approach used by Alitheia for handling shortest-
path queries in a general, (un)directed graphG = (V ,E); see Section 3 for further details. Consider
a request for the shortest path from some node s to another node t . At a high level, we want to en-
code correct computation of the result as an NP statement whose validity can then be verified using
existing systems (e.g., References [14, 38]). The naive way to do this would be to certify correct
execution of, say, Dijkstra’s shortest-path algorithm on the given inputs; this approach, however,
would be prohibitively slow. Instead, we rely on a certifying algorithm for shortest paths [33]. This
allows us to encode the correct result as a simple set of constraints (cf. Relation 1) on the shortest
paths from s to all nodes in the graph, which can be computed by the server with no crypto-
graphic work. The only cryptographic work required is for the verification of these constraints
using existing systems. We use similar techniques to design verifiable protocols for longest-path
and maximum-flow queries.

Although the above technique significantly reduces the practical overhead of existing solutions,
it requires the use of a general-purpose VC system on a relation of sizeO (m), wherem is the num-
ber of edges in the graph. Unfortunately, as we show in our experiments, such an approach does
not scale for large graphs. We address this in Section 4 (and scale to graphs with up to 200,000

1The performance of other RAM-based VCs [6–8, 14] is worse than Buffet; see [44].
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nodes) by taking advantage of the special structure of planar graphs. Such graphs are interesting
in our context, since they generally provide a good model for vehicular and road networks used
by navigation applications. We derive a more efficient protocol for shortest-path queries in pla-
nar graphs by leveraging a data structure based on the celebrated planar separator theorem [32].
This data structure answers shortest-path queries inO (

√
m) time, and its main operation involves

performing a MIN computation over the sum of two vectors of length O (
√
m). To verify the data

structure’s operation, we cannot use common authenticated data-structure techniques (e.g., Ref-
erences [4, 36, 41]), since these would yield proofs of size Ω(

√
n), where n is the number of nodes

in the graph. Instead, we achieve logarithmic-sized proofs by using a general-purpose VC sys-
tem only on the MIN relation. This approach, combined with an additively homomorphic vector-
commitment scheme [35], yields an improvement (compared to the approach described above) of
29× in the prover time for graphs with 10,000 nodes, and allows us to produce shortest-path proofs
on graphs with up to 200,000 nodes.

To further eliminate the use of generic VC systems and improve efficiency, we propose a special-
purpose vector-commitment scheme that supports verifying a MIN operation on the sum of two
vectors. The scheme is inspired by a recent construction of a set accumulator by Zhang et al. [48]
and is new to this version of our work. This vector-commitment scheme increases the asymptotic
complexity of answering shortest-path queries to O (m), but as shown in Section 6 it improves the
prover time in practice by 4000× compared to using a generic VC scheme.

Other related work. We have already discussed generic VC protocols above, so here we only
briefly mention the few prior VC protocols we are aware of that are specifically tailored to graph
computations. Yiu et al. [45] presented a verifiable protocol for shortest-path queries. However,
although their proof-computation time is shorter than ours, their protocols have worst-case proof
size linear in the number of the edges of the graph. Goodrich et al. [27] presented authenticated
data structures for various graph queries such as graph connectivity/biconnectivity but their work
does not cover advanced graph computations such as shortest-path queries.

Efficient and simple certifying algorithms have been used for verifying set queries [37] and data-
structure queries [42], but to the best of our knowledge they have not been used previously for
graph queries.

2 PRELIMINARIES

Define [z] = {1, 2, . . . , z}. We let k denote the security parameter and let PPT stand for “probabilis-
tic polynomial time.” We use (a; b) ← (A| |B) to denote joint execution of interactive algorithms A

and B, where A outputs a and B outputs b. We use neg to denote a negligible function.

Bilinear pairings. We denote by (p,G,GT , e,д) ← BilGen(1k ) generation of bilinear-map param-
eters, where G, GT are groups of prime order p with д a generator of G, and e : G × G→ GT is
an efficiently computable bilinear map, i.e., for all P ,Q ∈ G and a,b ∈ Zp it holds that e (Pa ,Qb ) =

e (P ,Q )ab .

Verifiable computation for graphs. In our setting, there are three parties: A trusted data owner,
an untrusted server, and a client (who may also correspond to the data owner). The data owner
outsources storage of a graph G to the untrusted server, who answers queries posed by the client.

Definition 1 (VC for Graphs). A VC scheme for graphs V consists of three PPT algorithms:
(1) genkey takes as input the security parameter and a graph G and outputs an evaluation key
ekG and a verification key vkG ; (2) compute takes as input an evaluation key ekG and a graph
query q, and outputs an answer α along with a proof πq ; and (3) verify takes as input a verification
key vkG , a query q, and answer α , and a proof πq , and outputs a bit.
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The above algorithms are used as follows. First, the data owner executes genkey and sends the
evaluation key ekG to the server. (We may assume without loss of generality that ekG includes
G itself.) The verification key vkG can be published (in the setting of public verifiability) or held
privately by the data owner (in the setting of private verifiability). The client, who is assumed to
know vkG , can then send a query q to the server; e.g., q might ask for the shortest path from s
to t in the graph. The server computes the answer α = q(G ) (e.g., the shortest path p) along with a
proof πq using compute. The client then verifies the validity of the response α by executing verify.
We define correctness and security as follows.

Definition 2. We say that a VC scheme for graphsV supporting a set of queries Q is correct if
for all k ∈ N, for all graphsG, for all (ekG , vkG ) output by genkey(1k ,G ), for all queries q ∈ Q , and
for all α ,πq output by compute(ekG ,q), it holds that α = q(G ) and verify(vkG ,q,α ,πq ) = 1. V is
secure if, for any PPT adversary Adv, the following is negligible in k :

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
G ← Adv(1k );

(ekG , vkG ) ← genkey(1k ,G );
(q,α ,πq ) ← Adv(ekG , vkG );

: verify(vkG ,q,α ,πq ) = 1
∧
α � q(G )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

SNARKs. A succinct non-interactive argument of knowledge (SNARK) [26, 38] enables an un-
trusted prover to prove that some statement x is in some NP language L; specifically, to prove
that there exists a w such that C (x ,w ) = 1 for C some Boolean circuit. The proof is required to be
succinct, i.e., with size independent of the witness w .

Definition 3 (SNARK). A SNARK G consists of three PPT algorithms: (1) genkey takes as input
the security parameter and a circuitC and outputs an evaluation key ekC and a verification key vkC ;
(2) compute takes as input an evaluation key ekC and values x ,w , and outputs a proof πx ; (3) verify

takes as input a verification key vkC , a value x , and a proof πx and outputs a bit.

Definitions of correctness and security for SNARKs follow.

Definition 4. SNARK G is correct if, for all k ∈ N, all circuits C , all ekC , vkC output by
genkey(1k ,C ), all x ,w for which C (x ,w ) = 1, and all πx output by compute(ekC ,x ,w ), it holds
that verify(vkC ,x ,πx ) = 1.
G is secure if, for all k ∈ N, all circuitsC , and any PPT adversary Adv, the following is negligible

in k :

Pr

[
(ekC , vkC ) ← genkey(1k ,C );
(x ,πx ) ← Adv(1k , ekC , vkC )

: verify(vkC ,x ,πx ) = 1
∧

�w : C (x ,w ) = 1

]
and, moreover, if for any polynomial-sized prover Prv there is an extractor Ext such that for any
x , the following is negligible in k :

Pr

⎡⎢⎢⎢⎢⎢⎣
(ekC , vkC ) ← genkey(1k ,C );
πx ← Prv(ekC , vkC ,x ;ω);
w ← Ext(ekC , vkC ,x ,ω)

: verify(vkC ,x ,πx ) = 1
∧
C (x ,w ) � 1

⎤⎥⎥⎥⎥⎥⎦ .
3 VC FOR GENERAL GRAPHS

Let G = (V ,E) be an (un)directed graph with positive weights cuv on its edges. Set |V | = n and

|E | =m; we assume m = Ω(n). Let p = v1v2 . . .vk denote a path in G of length |p | = ∑k−1
i=1 cvivi+1 .

In this section we show how to construct VC schemes for queries on general (un)directed graphs.
Sections 3.1, 3.2, and 3.3 deal with shortest-path queries, while Section 3.4 discusses longest-path
and maximum-flow queries.
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3.1 Strawman Solution

One trivial approach to constructing a VC scheme for shortest paths in a graph G is for the data
owner to simply pre-compute all shortest paths and sign them. That is, the genkey algorithm
computes the shortest pathpuv for all pairs of vertices (u,v ) ∈ V ×V and signs the resulting tuples
(u,v,puv ). The evaluation key includes all these signatures, and the verification key is just the
verification key for the signature scheme. The compute algorithm simply returns the appropriate
path along with its associated signature; verification is done in the natural way.

Although this solution has reasonable proof size and verification time, it requires O (n3) setup
time and produces an evaluation key of size O (n2).

3.2 Using General-Purpose Systems

A second idea is to use a SNARK or a generic VC scheme to verifiably execute an algorithm for
computing shortest paths. We sketch the idea based on a SNARK (genkey, compute, verify).

Let G be a graph, and let CG be a circuit that takes as input two vertices u,v along with a
path p, and outputs 1 iff p is a shortest path between u and v in G. We can construct a VC scheme
for shortest-path queries by having the data owner who holds G run (ek, vk) ← genkey(1k ,CG )
and then output these as the evaluation key and verification key, respectively. Given a pair of
vertices u,v , the server computes a shortest path p and then uses the SNARK to compute πx ←
compute(ek,x ,w ), where x = (u,v,p) and w is set to the empty string. The client can then verify
correctness of p using verify.

The main drawback of this approach is that a circuitCG for computing/verifying shortest paths
is quite large due to the lack of random-access memory and the need to unroll loops. One could
avoid expressing the computation as a circuit by using recently proposed methods [6, 7, 14, 44] for
verifying RAM programs; unfortunately, the constant terms involved are quite significant. As we
show in Section 5, this severely restricts the practicality of such approaches.

3.3 Our Method: Using Certifying Algorithms

We show here how to avoid using generic VC schemes applied to an entire shortest-path compu-
tation. Our main observation is that it instead suffices to apply VC to a small set of constraints.

Fix a graph G = (V ,E), and let s, t ∈ V be the source/destination pair of a shortest-path query.
Let S[v] denote the distance from node s to node v for all v ∈ V , where we view S as a vector of
length n. To verify that a shortest s-t path in G has length |p |, it suffices to verify that S satisfies

1. S[s] = 0 and S[t] = |p |.
2. All entries of S are positive.

3. ∀(u,v ) ∈ E : S[v] ≤ S[u] + cuv .

(1)

A straightforward proof can be found in Reference [33].
Let CG be a circuit that takes s , t , and a path length |p | as inputs, along with a witness S, and

outputs 1 iff the above conditions hold. Note that as the graph G is fixed and “hardcoded” into
the circuit, conditions 1 and 2 can be checked by an O (n)-sized circuit, and condition 3 can be
verified by an O (m)-sized circuit. Thus, CG can be expressed as a circuit of size O (m) where the
constant term is small, and in particular the resulting circuit will be smaller than a circuit for
computing/verifying the shortest path directly as considered in the previous section.

We can use this to build a VC scheme for shortest paths as follows. The genkey algorithm
generates parameters for a SNARK for the circuit CG , and also signs all the edges (u,v, cuv ) of
the graph G. The evaluation key includes all these signatures, and the verification key contains
the SNARK parameters and the verification key for the signature scheme. Given query (s, t ), the
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compute algorithm returns the edges and weights comprising a shortest path p, the correspond-
ing signatures on the edges and weights, and a proof π that there exists S with CG (s, t , |p |; S) = 1.
The verify algorithm works in the obvious way. Security of the scheme follows directly from the
security of the SNARK and the signature scheme. Using the SNARK by Parno et al. [38], we thus
obtain:

Theorem 3.1. Let n,m denote the number of nodes and edges, respectively, in the input graph, and

let |p | be the length of the shortest path returned. The VC scheme for shortest paths described above

has O (m) preprocessing time, O (m logm) prover time, and O ( |p |) proof length and verification time.

3.4 Longest Paths and Maximum Flows

It is straightforward to verify longest paths in directed acyclic graphs by slightly changing Rela-
tion 1. Specifically, for longest paths, one has to check that for all (u,v ) ∈ E it holds that S[v] ≥
S[u] + cuv (rather than S[v] ≤ S[u] + cuv ).

We can also handle maximum-flow queries in directed graphs by relying on the maxflow-mincut
theorem [18], which states that in a directed graph G with source s , sink t , and capacities cuv on
the edges (u,v ) ∈ E, a maximum flow f always equals the weight of a minimum cut. Thus, given
a candidate flow assignment F on every edge of the graph, and a disjoint partition (S,T ) of the
nodes (where S and T are binary vectors of length n indicating whether a given vertex is in S ,
respectively, T ), it suffices to check

1. S and T form a partition, with s ∈ S and t ∈ T .

2.
∑

e ∈out (s ) Fe = f .

3. ∀e ∈ E : Fe ≤ ce .

4. ∀u � {s, t } :
∑

e ∈in (u ) Fe =
∑

e ∈out (u ) Fe .

5.
∑

e ∈S×T ce = f .

(2)

Condition 1 ensures that the source and the sink are on two different sides of the cut. Condition 2
ensures that the outgoing flow of the source node is f . Condition 3 ensures that the flow assign-
ment on every edge is less than or equal to the capacity of that edge. Condition 4 ensures that the
incoming flow of every node is equal to the outgoing flow, except for the source and the sink node.
Condition 5 ensures that the total capacity from nodes in set S to set T is exactly equal to f , as
implied by the maxflow-mincut theorem.

Let CG be a circuit that takes s, t , f as inputs, along with witness F, S,T , and outputs 1 iff the
above conditions hold. We argue that CG can be implemented as an O (m)-size circuit. For con-
dition 1 we check that S and T are complementary and that S[s] = 1 and T [t] = 1, which can be
done by a circuit of size O (n). As the graph is fixed, the indices in the summations of conditions 2
and 4 are predetermined and independent of the inputs and the witness; thus, there is a circuit of
size O (m) that can check those conditions. For condition 3, we hardcode the capacity ce of each
edge in the circuit and both Fe and ce follow the same ordering of the edges. Therefore, there is
a circuit of size O (m) for checking condition 3. As for condition 5, for every edge e with source
node u and destination node v we multiply ce by S[u] and T [v]. The result is ce if e crosses the
cut, and 0 otherwise. We then sum up the result and compare to f . This can also be done using
an O (m)-size circuit. Therefore, verifying the above maximum-flow relation can be done in O (m)
time.

4 HANDLING PLANAR GRAPHS

A planar graph is a graph that can be drawn in the plane without any crossings. We remark that in
planar graphs it holds that m = O (n). Due to their special structure, algorithms for planar graphs
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Fig. 1. A planar graph (left) along with its planar separator tree (right). The dotted red circles denote the

nodes of the planar separator tree. Nodes 1, 2, 3 comprise the main separator of the graph and nodes 4, 5

and 6, 7 comprise the separators at the second level.

can be more efficient and Alitheia can take advantage of this. Specifically, in this section we con-
struct a VC scheme for verifying shortest-path queries in (un)directed planar graphs. As opposed
to the case of general graphs, we show that for planar graphs we can construct a prover that runs in
timeO (

√
n logn) = O (

√
m logm). We also propose a scheme that has asymptotically worse prover

time (O (n)), but runs faster in practice. As we will see in the experimental section, this enables us
to scale verifiable computation to 200,000-node graph.

4.1 The Planar Separator Data Structure

Our approach is based on a novel data structure that makes use of the planar separator theo-
rem [32]. The planar separator theorem states that the vertices of every planar graph G = (V ,E)
on n nodes can be partitioned into three sets Gl ,Gm ,Gr such that |Gl | ≤ 2n

3 , |Gr | ≤ n
3 , and

|Gm | = O (
√
n), and such that all the paths from Gl to Gr pass through Gm . Many data structures

(see Reference [22]) use various versions of this theorem to answer shortest-path queries in sub-
linear time—instead of the quasilinear time that Dijkstra’s algorithm requires. We describe one
simple such technique (and the one we use in Alitheia) in what follows.

Data structure setup. Let G = (V ,E) be an undirected planar graph of n nodes where each edge
(u,v ) ∈ E has positive weight cuv . We first decompose G into the partition (Gl ,Gm ,Gr ) using the
planar separator theorem. Then we recursively apply the planar separator theorem on Gl and Gr

until we are left with vertex sets containingO (
√
n) nodes. After the recursion terminates, the initial

graphG will be represented by a binary tree T (called a separator tree) of depthO (logn) and with
O (
√
n) internal nodes where each internal node t of this tree can be viewed as containing the

vertices of the separator of the graph induced by the vertices contained in t’s subtree. See Figure 1.
Every internal node in T represents a set containing O (

√
n) vertices of the original graph. If

u is a node of the original graph, then we define path(u) to be a path in T from the tree node
u containing u to the root node r of T . For a tree node p on path(u), we let Sup be a vector
containing the shortest path suv from u to v for all vertices v contained in (the set corresponding
to) (p). Our separator tree data structure contains, for all verticesu ∈ V , the precomputed distances
{Sup : p on path(u)}. The total space required to store the data structure and the time to construct

the data structure are bothO (n3/2).2 This is a significant improvement over the naive data structure
that precomputes the shortest paths between all pairs of nodes that requires O (n2) space.

2A detailed analysis is in Appendix A.
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Answering queries. Suppose now a client asks for the shortest path from u to v . First locate
separator-tree nodes u and v that contain u and v , respectively. We now distinguish two cases:

(1) If tree node u is an ancestor of tree node v (or vice-versa), then simply return suv ; note
this was precomputed during setup and is an element of the vector Suv.

(2) Otherwise, find tree nodes t1, t2, . . . , tk that are on both path(u) and path(v ). Then return

suv = min
i=1, ...,k

{min(Suti
+ Sv ti

)} , (3)

where + above denotes vector addition.

By using the separator tree data structure, we have reduced the problem of computing shortest
paths on planar graphs to the problem of performing vector additions and minimum computations.
The output of Equation (3) can be computed in O (

√
n) time.

4.2 Vector Commitment Schemes

To create a verifiable scheme based on the data structure described above, it remains to validate
the correctness of the minimum of the sum of two vectors. This can be supported by a vector

commitment scheme (VCS) [15]. Here we present definitions and propose two constructions.

4.2.1 Definitions. A vector commitment scheme enables a client to generate short digests of
vectors and then outsource storage of the vectors to a server. The client can later ask the server
to compute various functions on some of those vectors, and should be able to verify the returned
results. The particular functions of interest here are membership, and the minimum element of the
sum of two vectors. Definitions of a VCS and its security requirements are given below; we stress
that for our applications we do not need hiding.

Definition 5. A vector commitment schemeV consists of the following PPT algorithms:

(1) genkey takes as input the security parameter, a maximum length n, and a bound max, and
outputs a public key pk.

(2) digest takes as input pk and a vector S ∈ N ≤n
max, where Nmax = {0, . . . ,max − 1}. It outputs

a digest d .
(3) Membership takes as input pk, a vector S, and an index i . It outputs the i-th element S[i]

along with a proof π .
(4) verify_Membership takes as input pk, a digest d , an index i , a value α , and a proof π , and

outputs a bit.
(5) MinSum takes as input pk and two vectors S1, S2 of the same length. It returns the mini-

mum value in S1 + S2, along with a proof π .
(6) verify_MinSum takes as input pk, two digests d1,d2, a resultmin, and a proof π , and out-

puts a bit.

V is correct if, for all k,n,max, all pk output by genkey, all equal-length S1, S2 ∈ N ≤n
max, and all

d1 (respectively, d2) output by digest(pk, S1) (respectively, digest(pk, S2)):

(1) For all i , if α ,π is output by Membership(pk, S1, i ) then verify_Membership(pk,d1, i,
α ,π ) = 1.

(2) If α ,π is output by MinSum(pk, S1, S2), then verify_MinSum(pk,d1,d2,α ,π ) = 1.

ACM Transactions on Privacy and Security, Vol. 21, No. 4, Article 20. Publication date: September 2018.



20:10 Y. Zhang et al.

V is secure if for all k,n,max and any PPT adversary Adv the following are negligible in k :

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
pk← genkey(1k ,n,max);

S← Adv(1k , pk);
d ← digest(pk, S);

(i,α ,π ) ← Adv(pk, S)

:
verify_Membership(pk,d, i,α ,π ) = 1∧

S[i] � α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

and

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
pk← genkey(1k ,n,max);

S1, S2 ← Adv(1k , pk);
di ← digest(Si , pk) for i = 1, 2;

(α ,π ) ← Adv(pk, S1, S2)

:
verify_MinSum(pk,d1,d2,α ,π )∧

min(S1 + S2) � α .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

4.2.2 A Vector Commitment Scheme From SNARKs. In this section, we present our first con-
struction of a VCS using hashing and general-purpose SNARKs. The idea is very straightforward.
In the setup phase, the client builds a Merkle tree from the elements in a vector S and keeps the
root d (S); it also initializes a SNARK G for a circuit taking dig1, dig2,min as inputs, S1, S2, ind as
witness, and verifying the following conditions:

1.d (S1) = dig1,d (S2) = dig2 ;

2.S = S1 + S2 ;

3.S[ind] ≤ S[i] for i = 0, . . . ,M − 1 ;

4.S[ind] =min.

(4)

Namely, the circuit checks that elementmin is the minimum among the elements contained in the
sum of two vectors with Merkle roots dig1, dig2. The SNARK is used for verifying a relation similar
to Equation (3). Then MinSum simply runs G.compute, and verify_MinSum runs G.verify.

We can use a collision-resistant hash function such as SHA-2 to build the Merkle hash tree. How-
ever, such a scheme cannot be efficiently combined with a SNARK. Therefore, we use a SNARK-
friendly hash function, the security of which is based on the difficulty of finding small integer
solutions in lattices (i.e., the SIS problem). A description of the hash function and an analysis of
its security can be found in Reference [49].

For vectors of maximum length n, the setup algorithm runs in O (n) time, Membership and
verify_Membership run in O (logn) time, MinSum runs in O (n logn) time, and verify_MinSum

runs in O (1) time.

4.2.3 A Customized Vector-Commitment Scheme Supporting Addition and Minimum. Though
asymptotically close to optimal, the VCS based on SNARKs described above is efficient in prac-
tice because of the expensive cryptographic operations involved. Therefore, we propose a second
vector commitment scheme that does not use SNARKs at all. As we will show in Section 6, using
this customized VCS is 1000× faster (for the prover) than using SNARKs. This second construc-
tion is based on recent construction of an expressive set accumulator supporting intersection and
minimum queries [48]. We explain the high-level idea of the construction below.

Given two vectors S1, S2 ∈ N n
max, we define two bivariate polynomials f1 (x ,y) =

∑n
i=1 x

iyS1[i]

and f2 (x ,y) =
∑n

i=1 x
n−iyS2[i]. Then we have

f1 (x ,y) · f2 (x ,y) = xn
n∑

i=1

yS1[i]+S2[i] + q(x ,y),

where q(x ,y) is a bivariate polynomial without an xn term, and the element-wise sum of the two
vectors for each index i is in the exponent ofy with a xn term in front. To delegate this computation
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Fig. 2. Our vector commitment scheme supporting computation of the minimum of the sum of two

vectors.

to the prover, we pick two random values s, r ∈ Z∗p to replace the variables x ,y, and compute the

digests d (S1) = дf1 (s,r ) and d (S2) = дf2 (s,r ) during the setup phase, where д is the generator of a
bilinear group. At query time, given appropriate public keys, the server computes and sends back

д
∑n

i=1 r S1[i]+S2[i]
and дq (s,r ) as the proof, and the verifier validates the relationship in the equation

above using a bilinear pairing, which guarantees that д
∑n

i=1 r S1[i]+S2[i]
is indeed computed correctly.

Finally, observe that the minimum elementmin in S1 + S2 is the lowest degree of r in д
∑n

i=1 r S1[i]+S2[i]
,

and we have a protocol to compute this verifiably.
Membership queries utilize a similar idea by setting the second polynomial above to f2 (x ,y) =

xn−i for a query at index i . The full scheme is presented in Figure 2. For simplicity, we write
verify_Membership and verify_MinSum as taking all of pk as input, even though they only access
a constant number of terms in pk. In practice, a Merkle tree or signatures can be used to reduce
the verifier’s storage.
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Security of the scheme relies on the following assumptions [48]:

Assumption 1 (q-strong bilinear Diffie-Hellman (q-SBDH)). For all polynomial q and all

ppt algorithms A,

Pr
[
pub ← BilGen(1k ); s, r ,α ← Z∗p ;σ = pk ; (c,h) ← A(σ ) : h = e (д,д)1/(c+r )

]
≤ neg(k ).

Assumption 2 (q-Power Knowledge of Exponent). For every PPT adversary A there is a PPT

extractor Ext such that for any auxiliary information z that comes from a benign distribution3

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pub ← BilGen(1k );
α , r ← Z∗p ;

σ = (pub, {дr i

,дαr i }i ∈[q]);
(c, ĉ ) ← A(σ , z;ω)

{a0, . . . ,aq } ← Ext(σ , z,ω)

: ĉ = cα ∧ c �
q∏

i=0

дai r i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ neg(k ).

Assumption 3. For every PPT adversary A

Pr
[
pub ← BilGen(1k ); s, r ,α ← Z∗p ; (G,h) ← A(pk ) : h = дsnG (r )

]
≤ neg(k ),

where pk is defined in Figure 2, and G (·) is a nonconstant polynomial of degree at most 2q.

A justification of Assumption 3 in the generic group model can be found in Reference [48,
Appendix B].

Theorem 4.1. The vector commitment scheme in Figure 2 is correct and secure under Assump-

tions 1, 2, and 3.

Proof. Correctness is immediate, and so we focus on security.
Membership query. Suppose Adv returns a∗ � S[i] and passes verification. Then

e (d1 (S),дsn−i

) = e (дsn

,дr a∗
) · e (д,π )

⇔ e (д,д)snr S[i]+q (s,r ) = e (д,д)snr a∗ · e (д,π )

⇔ дsn (r S[i]−r a∗ ) = π · д−q (s,r ),

violating Assumption 3.
Minsum query. Suppose Adv returns claimed minimum v and proof π ∗1 that pass verification.
Condition (1), along with Assumption 2, implies that there is an extractor Ext that can can compute

a0, . . . ,a2q such that π ∗1 = д
∑2q

i=0 ai r i

. By condition (2),

e (d1 (S1),d2 (S2)) = e (дsn

,д
∑2q

i=1 ai r i

) · e (д,π3)

⇔ e (д,д)
∑n

i=1 snr S1[i]+S2[i]+q (s,r ) = e (д,д)sn (
∑2q

i=1 ai r i ) · e (д,π3)

⇔ дsn (
∑n

i=1 r S1[i]+S2[i]−∑2q

i=1 ai r i ) = π3/д
q (s,r ) .

If
∑n

i=1 r
S1[i]+S2[i] −∑2q

i=1 air
i is a nonconstant polynomial, then this violates Assumption 3. There-

fore, π ∗1 = д
∑n

i=1 r S1[i]+S2[i]+a0 .
Now if a0 � 0, then condition (3) implies

e (д
∑n

i=1 r S1[i]+S2[i]+a0 ,д) = e (дr v

,д) · e (дr v+1

,π4)

⇔ e (д,д)
a0
r = e (д,д)r v−1 · e (д,π4)r v

/e (д,д)
∑n

i=1 r S1[i]+S2[i]−1

3This is defined as in [19, 23, 28]), to avoid the negative results of [11, 13].
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⇔ e (д,д)
1
r = (e (д,д)r v−1 · e (д,π4)r v

/e (д,д)
∑n

i=1 r S1[i]+S2[i]−1

)a−1
0 .

As v > 0 by condition (4), this violates Assumption 1. Therefore, a0 = 0 and π1 = д
∑n

i=1 r S1[i]+S2[i]
.

Now suppose v < min, then by condition (3),

e (д
∑n

i=1 r S1[i]+S2[i]

,д) = e (дr v

,д) · e (дr v+1

,π4)

⇔ e (д,д)r v

= e (д
∑n

i=1 r S1[i]+S2[i]

,д)/e (дr v+1

,π4)

⇔ e (д,д)
1
r = e (д

∑n
i=1 r S1[i]+S2[i]−(v+1)

,д)/e (д,π4),

which breaks Assumption 1.
Suppose v > min, i.e., v ≥ min + 1. If j is the index of the correct minimum value, then by con-

dition (3) we have

e (д
∑n

i=1 r S1[i]+S2[i]

,д) = e (дr v

,д) · e (дr v+1

,π4)

⇔ e (д,д)r min+
∑n

i=1,i�j r S1[i]+S2[i]

= e (д,д)r v · e (д,π4)r v+1

⇔ e (д,д)r min

= e (д,д)r v · e (д,π4)r v+1 · e (д,д)−
∑n

i=1,i�j r S1[i]+S2[i]

⇔ e (д,д)
1
r = e (д,д)r v−(min+1) · e (д,π4)r v−min · e (д,д)−

∑n
i=1,i�j r S1[i]+S2[i]−(min+1)

,

which breaks Assumption 1. Therefore, v =min. �

Complexity analysis. For vectors with maximum length n and maximum value max, algorithm
genkey runs in O (M ·max) time, setup runs in O (M ) time, Membership runs in O (M ) time,
verify_Membership runs in O (1) time, MinSum runs in O (M2) time, and verify_MinSum runs in
O (1) time. In addition, the size of the public key isO (M ·max). Though the asymptotic complexity
of MinSum is worse than the VCS based on SNARKs, it only involves modular multiplications and
its concrete efficiency is much better for reasonable M and max [48]. In particular, in our scheme
for planar graphs, M = O (

√
n) and max = O (n), where n is the size of the graph.

4.3 VC Scheme for Planar Graphs

We now present our construction for verifying shortest paths in planar graphs using the planar
separator tree data structure and our VCS.

Setup. At setup, given a graphG we runV .genkey for a VCSV , build the planar separator tree T
for G, and compute the shortest-path vectors Sup for all u ∈ G and p ∈ path(u). Then, we commit
to the shortest-path vectors by computing their digests using the vector commitment schemeV ,
i.e., we compute

dup ←V .digest(Sup,V .pk) for all u ∈ G and p ∈ path(u).

For clarity of presentation, we assume the verification key of the final VC scheme contains (i) the
digests dup for all u ∈ G and p ∈ path(u); (ii) path(u) for all u ∈ G; and (iii) the graph G itself,
along with the weights cuv on the edges (u,v ). Although storing all this information requires at
least linear space, it is easy to outsource it by computing a MAC (for private verification) or digital
signature (for public verification) of each object above. (Indeed, our implementation employs this
strategy using HMAC.)

Proof computation and verification. In the proof-computation phase, a proof must be con-
structed showing that suv is the shortest path from u to v . Let now v be the separator-tree node
containing vertex v and let u be the separator-tree node containing vertex u. We distinguish two
cases, depending on the location of u and v in the separator tree:
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Fig. 3. A VC scheme for shortest paths in a planar graph G.

Case 1. If v is on the separator-tree path from u to the separator-tree root r (or vice versa), then the
shortest path suv has been precomputed and is an element of the vector Suv. Therefore it suffices
for the prover to return a proof for the element of Suv that corresponds to the shortest path suv .
The verifier can verify this proof using the digest duv.

Case 2. Otherwise, the prover takes the following steps:

(1) It computes the common ancestors t1, t2, . . . , tk of u and v in the separator tree T . Recall,
that, due to the planar separator structure, all the shortest paths from u to v must pass
through one of these nodes.

(2) Let nowmini (for i = 1, . . . ,k) be the minimum element of the vector Suti
+ Sv ti

, occurring
at node wi ∈ ti , i.e., mini = suwi

+ svwi
. For i = 1, . . . ,k , the prover outputs a VCS proof

πi by calling V .MinSum(Suti
, Sv ti
,V .pk). This proof is used to prove that mini is the

minimum of vector Suti
+ Sv ti

(and therefore a potential length for the shortest path from
u to v). After all VCS proofs formini (i = 1, . . . ,k) are verified by the verifier, then he can
verify the length of the shortest path as min{min1,min2, . . . ,mink }.

The detailed description of our VC scheme is shown in Figure 3.
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Asymptotic complexity and security. Let m = O (n) be the number of edges in a planar graph.
First, the most costly operation of genkey is the computation of the planar separator data structure.
By using standard results from the literature [22], this cost isO (m3/2). Note that this is a one-time
cost.

As far as algorithm compute is concerned, the cost is dominated by computing one proof us-
ing the vector commitment scheme. When initiated using SNARKs, each SNARK proof takes
O (
√
m logm) time (since the description of the language we are encoding has size O (

√
m)) and

the total worst-case cost of computing the proof is O (
√
m logm). When initiated using our cus-

tomized VCS, the total worst-case cost of computing the proof is O (m).
Finally, the size of the proof is O (logm + |p |), since O (logm) VCS proofs must be returned as

well as signatures on the edges of the path, and the verification time isO (logm + |p |). The security
of the final VC scheme follows directly from the security of the VCS. We summarize the above in
the following theorem:

Theorem 4.2. Let G be a planar graph with m = O (n) edges. Our VC scheme for shortest paths

in G has (i) O (m
√
m) preprocessing time; (ii) O (

√
m logm) prover time using the first VCS and O (m)

prover time using the second VCS; (iii) O (logm + |p |) proof size and (iv) O (logm + |p |) verification

time, where p is the output shortest path.

5 IMPLEMENTATION

In this section, we describe the implementations of six different VC schemes for shortest paths and
one VC scheme for maximum flow. Parts of our implementation (Libsnark BFS) use Libsnark [7],
which can support any NP language L. To use it, one needs to write a C program that takes as in-
put the NP statement and the witness and verifies the validity of the witness. Then this program
is compiled into a Boolean/arithmetic circuit that is used to produce the evaluation and verifica-
tion keys. The parts that did not require Libsnark (e.g., building the planar separator tree) were
implemented in C++.

Our implementation uses MACs (specifically, HMAC from openssl [1]) in place of digital sig-
natures, and so all our schemes achieve only private verifiability. To make our schemes publicly
verifiable without significantly affecting performance, we could use standard techniques combin-
ing Merkle hash trees with a signature on the root. To ensure a fair comparison with Libsnark, in
our experiments we “turn off” public verifiability and zero knowledge in the latter.

Strawman scheme. As our baseline, we implemented the strawman algorithm as described in
Section 3.1. Since we will be running experiments on unit-weight graphs (see next section), we
use n rounds of BFS instead of the Floyd-Warshall algorithm to precompute all shortest paths,
which has O (nm) complexity (instead of O (n3)). We then compute an HMAC of each shortest
path.

Libsnark BFS scheme. Our second attempt was to execute the BFS code directly in Libsnark.4

We implemented the algorithm shown in Figure 4 and compiled it into a circuit using the compiler
provided by Pinocchio [38]. The two most important limitations, inherent to using a circuit repre-
sentation, are that (1) array accesses on nonconstant addresses must be implemented by a circuit
of linear size; (2) the bound of a loop must be predefined.

Figure 4 shows Boolean-circuit pseudocode for an implementation of breadth-first-search (BFS)
to find the shortest path in a unit-weight graph. Note that Lines 9–11 of the pseudocode replace
random accesses, and this increases the complexity from O (m + n) to O (mn). To make the algo-
rithm more circuit friendly, we simulated the BFS queue with an array Q of fixed size (we cannot

4A recent optimization by Reference [28] is enabled.
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Fig. 4. The BFS pseudocode we implemented in Libsnark. ArrayQ has |V | positions and simulates the queue

in BFS.

implement dynamic data structures in a circuit). The index pointer head records the starting point
of the queue and the index pointer tail records the end of the queue. The size of Q is equal to
the number of vertices in the graph, since every node is enqueued and dequeued exactly once.
However, we note that the same technique cannot be easily generalized to Dijkstra’s algorithm on
a weighted graph, since that algorithm uses a more complicated priority queue.

Buffet BFS scheme. We implemented the BFS algorithm in a subset of C and compiled it to a
RAM-based VC instance using the frontend compiler of Buffet. We then executed the backend5

of Buffet on that instance.

Certifying algorithm scheme. We implemented the certifying algorithm with an efficient circuit
of O (m) size, as explained in Sections 3.3 and 3.4. We compute the shortest-path vector S (which
the server provides as input to Relation 1) using the BFS implementation in the LEDA library
(version 6.4) [30]. We note here that, contrary to the BFS algorithm, the certifying approach can be
naturally applied for weighted graphs—see Relation 1. As in Reference [49], our implementation
of certifying algorithms and the first planar-separator scheme uses Pinocchio [29, 38], an old
implementation of SNARKs. Integrating optimized SNARKs [7, 28] could lead to an improvement
of up to an order of magnitude but is left as future work.

While implementing the condition of Equation (1) in Pinocchio, we observed that compari-
son operations (≤, ≥) are much more expensive than addition and multiplication. Therefore, for
unit-weight graphs we replaced the second condition of Equation (1) by an equivalent equality
constraint with an additional input auv , i.e.,

S[v] − S[u] − avu = 0,where avu ∈ {−1, 0, 1}.

5The backend of Buffet can also be re-factored to use an optimized version [28], which would improve the setup time,

prover time, and server storage by approximately 30%, the proof size by approximately 50%, and the verification time by

about 67%. This optimization is not included in the current implementation of Buffet.
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This optimized version of the certifying algorithm improved the prover performance by 55×. How-
ever, this method cannot be applied to graphs with general weights, since checking the domain of
the additional input may slow down the performance.

Planar-separator scheme. We implemented the VC scheme for planar graphs as described in
Figure 3. To build the planar separator tree, we first triangulate the input graph using the LEDA
library [30]; the triangulated graph is then input recursively into the recent planar separator im-
plementation by Fox-Epstein et al. [24]. The digests of the shortest-path vectors are computed
using our implementations of the vector commitment schemes described earlier. We compute an
HMAC of these digests, along with precomputed distances and paths, and then outsource them.
For our first VCS, we use SNARKs based on Pinocchio. For our second VCS, we use the ate-paring
library [2] on a 254-bit curve for the bilinear group.

Verifying max-flow. Verification of maximum flow is implemented as described in Section 3.4.

6 EVALUATION

We now evaluate the shortest-path verification using (i) the strawman scheme, (ii) the Libsnark
BFS scheme, (iii) the Buffet BFS scheme, (iv) the certifying-algorithm scheme, and (v) the planar
separator scheme with two different vector commitment schemes. We also present experiments
for maximum-flow verification. We do not present results for longest-path verification, since this
can be done using essentially the same certifying algorithm as for shortest paths (with a change
in direction of the inequality).

Experimental setup. We executed our experiments on an Amazon EC2 machine with 15GB of
RAM running a Linux kernel.

We present results for the preprocessing time, proof-computation time, verification time, and server

storage. All schemes were run on the same randomly generated planar, undirected graph (we use
the LEDA function random_planar_graph for this) with unit weights. We collected 10 runs for
each data point, and we report the average in Figures 5, 6, 7, and 8. In all these figures, estimated
data points (due to exceeding memory/time) are marked as lightly shaded bars. We experiment on
planar graphs withn = 10, 102, . . . , 105 vertices, where the number of edges is at most 3(n − 2) (due
to planarity). Our planar scheme was the only one to successfully execute on a graph of 200,000
nodes.

Preprocessing time. Figure 5 compares preprocessing time across the schemes. The results
show that the certifying algorithm outperforms Libsnark and Buffet BFS by orders of mag-
nitude. Specifically, the optimized certifying algorithm runs approximately 6,300 times faster than
Libsnark, and 140 times faster than Buffet, on a graph with 10,000 nodes.

In our experiments, the Libsnark and Buffet BFS implementations are so inefficient that it
takes too long to get a result even for graphs with more than 100 nodes. Thus, the results for
larger graphs are estimated by extrapolating from the results on small graphs.

Surprisingly, although the complexity of preprocessing time in the planar separator schemes is
O (n3/2), that scheme executes faster than the certifying algorithm (that has linear preprocessing
time), because most of the work is non-cryptographic and can be implemented efficiently in regular
C++ code. In particular, the first planar separator scheme outperforms the certifying algorithm
scheme in the preprocessing time by 29× on a graph with 10,000 nodes and the second planar
separator scheme is faster by 453×. Both schemes can scale to a graph with up to 200,000 nodes.

Finally, since the strawman scheme does no cryptographic work other than HMACs, it runs
extremely fast on small graphs. However, its execution time becomes equal to that of the second
planar separator scheme on a graph with 100 nodes and is 16×worse on a graph with 1,000 nodes.
We had to estimate the preprocessing time of the strawman approach on a graph of 100,000 nodes,
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Fig. 5. Preprocessing time. We were only able to

execute BFS for graphs of up to 50 nodes. All other

points (shaded bars) are estimated.

Fig. 6. Proof-computation time. We were only

able to execute the certifying algorithm for up to

10,000 nodes.

Fig. 7. Verification time. Fig. 8. Server storage.

since storing an all-pairs-shortest-path matrix of size 100,000×100,000 requires too much memory
(we ran BFS 100,000 times and compute 100,0002 HMACs to estimate the cost).

Proof-computation time. Figure 6 shows a comparison among the implemented schemes in
terms of proof-computation time. The results clearly indicate that the certifying algorithm ap-
proach outperforms the BFS approaches and that the planar separator approach outperforms
both BFS and the certifying algorithm dramatically. In particular, proof-computation time of the
first planar separator scheme has a speedup of more than 1.4 · 106× compared to Libsnark and
180× compared to Buffet, on a 10,000-node graph. Our second planar separator scheme, though
asymptotically worse than the first one, further improves the performances by more than 4000× on
the first scheme.

We note here that in the case of the planar separator schemes, we report worst case results in
Figure 6. Worst case proof-computation time is derived when the source s and the destination t
of our query are sibling leaves in the planar separator tree, in which case we need to perform
the maximum number of MIN computations (approximately O (logn)). This is because the proof
computation algorithm always examines all common parents of the two planar separator tree
nodes containing s and t . On the contrary, if there is only one common parent, namely the root,
of the two tree nodes, the proof computation only does one MIN computation and is defined as the
best case. Table 2 shows the comparison between the worst and the best case in our first planar
separator scheme. It can be observed that the time of the worst case is roughly logn times the time
of the best case. Verification times also have similar relationships.

The planar separator schemes reduce the proof-computation time dramatically and this is one
of the main contributions of this work, since this metric (proof-computation time) is the most

ACM Transactions on Privacy and Security, Vol. 21, No. 4, Article 20. Publication date: September 2018.



Verifiable Graph Processing 20:19

Table 2. Worst and Best Cases for Planar Proof-computation Time

n Planar Separator Scheme 1
Proof computation Verification

Worst case (s) Best case (s) Worst case (s) Best case (s)
1,000 11.425 1.572 0.547 0.063

10,000 22.223 4.099 0.944 0.085
100,000 66.374 6.147 1.350 0.127
200,000 93.853 7.472 1.729 0.194

Table 3. Proof-computation Time (seconds)

Strawman Libsnark Buffet Certifying Planar Planar
BFS BFS Algorithm Separator 1 Separator 2

10 0.00001 4.24 14.41 0.044 0.85 0.000045
100 0.00001 2,700∗ 186.56 0.48 4.62 0.00047

1,000 0.00001 320,000∗ 4,000∗ 5.50 11.43 0.00094
10,000 0.00001 32,000,000∗ 70,000∗ 56.02 22.22 0.011

100,000 0.00001 3,300,000,000∗ 1,100,000∗ 560∗ 66.37 0.017
200,000 0.00001 13,000,000,000∗ 2,500,000∗ 1120∗ 93.85 0.022

expensive in existing work. For example, our work shows that graph processing can scale up to
200,000 nodes, since it takes only tens of milliseconds as shown in Figure 6 to produce a proof for
such large graphs. The exact numbers of our proof-computation time can be found in Table 3.

Verification time. Figure 7 shows statistics about verification time. In accordance with the asymp-
totics (see Table 1), the verification for BFS and the certifying algorithm is faster than the planar
separator schemes. Still, as shown in Figure 7, the verification time of the planar separator schemes
does not grow that much. It requires less than 2s on a graph with 100,000 nodes for the first scheme,
and only around 0.04s for the second scheme. Therefore, considering the significant improvements
on proof-computation time, the small increase in the verification time is a good trade-off. Finally,
similarly to proof-computation time, the verification of the strawman approach requires a small
amount of time, since it only requires verifying HMACs of the shortest path edges, which is in-
significant.

Server storage. Here we compare the total amount of storage required on the server side. In
the strawman scheme, the server stores the all-pairs-shortest-path matrix and the corresponding
HMACs. In the BFS schemes, the server stores the Libsnark and Buffet circuits and evaluation
keys. Note that in both these schemes, it is not necessary to store the graph G itself (in the straw-
man scheme the shortest paths are precomputed; in the BFS schemes the graph is embedded in the
circuits) and therefore we do not count the graph size. On the contrary, the certifying algorithm
scheme requires the server to store the graph (to compute the shortest paths), the Libsnark cir-
cuit, the respective evaluation key and the HMACs of edges—all these are included in the server
storage of this scheme. Finally, in the planar separator schemes, the separator tree is part of the
server storage in addition to that of the certifying algorithm.

Figure 8 shows the comparison of the server storage. Since the Libsnark and Buffet evalua-
tion key sizes are proportional to the size of the circuits and the certifying algorithm has a more
efficient circuit implementation, the server storage for the certifying algorithm is much smaller.
In particular, the server storage is reduced by 145× compared to Libsnark and 133× compared to
Buffet, on a graph with 100 nodes and the gap grows on larger graphs.
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Table 4. Proof Size in KB for |p | = 10

n Strawman Libsnark Buffet Certifying Planar Planar
BFS BFS Algorithm Separator 1 Separator 2

100 0.352 0.127 0.288 0.608 1.76 0.955
1,000 0.352 0.127 0.288 0.608 3.2 1.59
10,000 0.352 0.127 0.288 0.608 4.64 2.25

Table 5. Maximum-flow Scheme Proof-computation Time

n Libsnark Implementation (s) Buffet Implementation (s) Maximum-flow Scheme (s)
10 >4.24 >14.414 0.701
100 >2,700 >186.56 31.15

1,000 >320,000 >4,000 1,003

The planar separator schemes have the least storage requirements. As shown in Figure 8, al-
though the server storage is around 4× larger on a small graph with 10 nodes compared to the
certifying algorithm, it is reduced by 3× or more for larger graphs with more than 1,000 nodes. Fi-
nally, the server storage is a major drawback of the strawman approach, as the server needs to store
n2 HMACs (each being 256 bits) for the shortest paths. As such, our planar separator tree schemes
outperform the strawman scheme by 3× on an 1000-node graph and by 700× on an 100,000-node
graph. Here the storage of our second planar separator scheme is only slightly better than the first
one, because the storage is dominated by the planar separator tree structure, which is the same for
both schemes.

Proof size. One drawback of our approaches compared to the BFS approach is the proof size. The
proof size of the Libsnark BFS and the Buffet BFS scheme is always a constant (127 and 288
bytes)—see Reference [38]. However, in our approaches (certifying algorithm and planar separa-
tor), the proof contains a 256-bit (32 bytes) HMAC for each edge contained in the shortest path,
therefore being proportional to the size |p | of the shortest path p. Specifically, for the case of the
certifying algorithm scheme the proof size is |p | × 32 + 288 bytes while for the planar separator
scheme the proof size is |p | × 32 + c × logn bytes, where c is the size of each VCS proof (288 bytes
for the first scheme and 127 bytes for the second scheme). As a reference, the proof size of the
strawman scheme is ( |p | + 1) × 32, since the length of the path as well as every path edge needs
to be HMACed.

Table 4 compares the proof size of all four schemes for |p | = 10. Note that although the proof size
of our approach slightly increases, the bandwidth of all approaches is the same and proportional
to |p |, since the answer p is always required to be returned to the client.

Evaluation of the maximum-flow scheme. Table 5 compares the prover time between imple-
menting the maximum-flow algorithm directly using Libsnark and using the certifying-algorithm
approach. Actually, maximum flow algorithms are much more complicated than BFS and we could
not implement them directly on Libsnark and Buffet easily. However, we observed that the
Edmonds-Karp algorithm [18] computes maximum flows by calling BFS as a subroutine. Thus we
use the proof time of BFS on the same graph as a lower bound. Even so, Table 5 shows that the
certifying algorithm for maximum flow outperforms the lower bound by orders of magnitude. In
particular, the certifying algorithm speeds up by at least 320× and 4×, respectively, on a graph
with 1,000 nodes.

Discussion. Our experiments show that the certifying-algorithm approach can scale to 10,000-
node graphs for verifying shortest paths and 1,000-node graphs for verifying maximum flow. In
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contrast, generic VC (namely, Libsnark) runs out of memory on larger graphs. To improve the
scalability of these approaches, we need to rely on generic VC schemes with less memory usage
and faster prover time, such as those in References [46, 47], and exploring the performance of these
schemes for verifying graph queries is left as future work.

Our verifiable shortest-path schemes for planar graphs can scale to graphs with 200,000 nodes.
The preprocessing in these schemes is slow and starts to run out of memory on larger graphs, as
the complexity of the preprocessing phase is O (m3/2). To scale to larger graphs, we need to find
more efficient algorithms for finding planar separators and for storing the planar separator tree
efficiently on disk.

APPENDIX

A COMPLEXITY ANALYSIS OF THE PLANAR SEPARATOR TREE

Setup. Suppose the time to construct the planar separator tree structure is T (n). By the planar
separator theorem, the planar separator of the first level contains O (

√
n) vertices. The complexity

to compute the distances between all other vertices to every vertex in this planar separator is
thusO (n3/2). Therefore,T (n) = T (εn) +T ((1 − ε )n) +O (n3/2), where 1

3 ≤ ε ≤ 2
3 . Therefore,T (n) =

O (n3/2) and the derivation is as follows:

T (n) =T (εn) +T ((1 − ε )n) +O (n3/2)

=T (ε2n) + 2T (ε (1 − ε )n) +T ((1 − ε )2n) + (ε3/2 + (1 − ε )3/2)O (n3/2) +O (n3/2)

=T (ε3n) + 3T (ε2 (1 − ε )n) + 3T (ε (1 − ε )2n) +T ((1 − ε )3n) + (ε3/2 + (1 − ε )3/2)2O (n3/2)

+ (ε3/2 + (1 − ε )3/2)O (n3/2) +O (n3/2)

= . . .

=O (n3/2) + ρO (n3/2) + ρ2O (n3/2) + · · ·
=O (n3/2),

where ρ = ε3/2 + (1 − ε )3/2 < 1. The space required to store the data structure follows the same
analysis and is also O (n3/2).

Query. In the worst case, the two vertices u,v in the shortest path query are in the two siblings
of the planar separator tree on the leaf level. To answer the query, one needs to perform one
vector addition and one minimum for every planar separator node on path(u) (or path(v )). The

total complexity is bounded by O (
√
n) +O (

√
εn) +O (

√
ε2n) + · · · = O (

√
n), where 1

3 ≤ ε ≤ 2
3 .
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