
Analysis of a Proposed Hash-Based

Signature Standard

Jonathan Katz∗

Abstract

We analyze a signature scheme described in a recent Internet Draft,
and highlight a variant (based on prior work of Micali and Leighton)
that offers improved concrete security.

1 Overview

McGrew [5] recently proposed a standard for hash-based digital signatures.
The proposed construction instantiates Merkle’s tree-based approach [6, 7]
with the one-time signature scheme of Lamport-Diffie-Winternitz-Merkle [3,
6, 7] (the LDWM scheme). The concrete security of the construction de-
pends on the concrete security of the LDWM scheme in the multi-instance
setting, where multiple public keys are generated and an attack is successful
if it results in a forged signature with respect to any of those keys. Here,
we analyze the concrete security of the LDWM scheme in the multi-instance
setting, and highlight some modifications (previously proposed by Leighton
and Micali [4]) that yield better concrete security in this setting.

2 Description of the Proposed Scheme

We begin with a detailed description of the LDWM scheme, following [5].
Let H : {0, 1}∗ → {0, 1}8n and F : {0, 1}8m → {0, 1}8m be functions that
we will treat as random oracles. Let F i, for integer i ≥ 1, denote i-fold
iterated application of F , and let F 0 denote the identity function. Fix

∗Dept. of Computer Science, University of Maryland. Email: jkatz@cs.umd.edu. Work
performed under a consultancy agreement with University Technical Services, Inc. on
behalf of the National Security Agency. We thank Laurie E. Law and Jerome A. Solinas
for bringing [4] to our attention, and for suggesting we write this paper.

1

w ∈ {1, 2, 4, 8} as a parameter of the scheme, and set e def= 2w − 1. Set
u

def= 8n/w; note that outputs of H can be viewed as a sequence of u integers,
each exactly w bits long. Set v def= dblog u · (2w − 1) + 1c/we, and define
checksum : ({0, 1}w)u → {0, 1}wv as follows:

checksum(h0, . . . , hu−1) =
u−1∑
i=0

(2w − 1− hi) ,

where each hi ∈ {0, 1}w is viewed as an integer in the range {0, . . . , 2w − 1}
and the result is written as an integer using exactly wv bits. Set p def= u+ v.

Define a one-time signature scheme as follows:

Key generation

1. Choose p uniform values x0, . . . , xp−1 ∈ {0, 1}8m.

2. For i = 0 to p− 1, compute yi := F e(xi).

3. Compute pk := H(y0, . . . , yp−1).

The public key is pk, and the private key is x0, . . . , xp−1.

Signing
To sign a message M ∈ {0, 1}∗ using private key x0, . . . , xp−1 do:

1. Compute h := H(M) and c := checksum(h). Set V := h‖c, and parse
V as a sequence of w-bit integers V0, . . . , Vp−1.

2. For i = 0, . . . , p− 1, compute σi := F Vi(xi).

3. Return the signature σ0, . . . , σp−1.

Verifying
To verify a signature σ0, . . . , σp−1 on a message M ∈ {0, 1}∗ with respect to
the public key pk do:

1. Compute h := H(M) and c := checksum(h). Set V := h‖c, and parse
V as a sequence of w-bit integers V0, . . . , Vp−1.

2. For i = 0, . . . , p− 1, compute yi := F e−Vi(σi).

3. Return 1 if and only if pk = H(y0, . . . , yp−1).

2

3 Security Analysis of the Proposed Scheme

We assume the reader is familiar with the standard notion of security for one-
time signature schemes (see [2]). When the output lengths n,m (in bytes)
of the hash functions are sufficiently large, as they are in [5], the LDWM
scheme can be proven secure when H,F are modeled as random oracles [1].
Here, however, we are interested in concrete security, and so we explore how
large n,m need to be in order to ensure “k-bit security,” i.e., to ensure that
an attacker needs to invest roughly 2k work in order to forge a signature
with probability close to 1. We measure work in terms of the number q of
H- and F -evaluations performed. This is a somewhat coarse measure, and
a more refined analysis would also take into account memory usage as well
as the effect of parallelization. Nevertheless, this measure serves as a good
first approximation to the difficulty of forging a signature.

Finding a collision in H. A signature forgery is possible if a collision in H
can be found. By evaluating H a total of q times, a collision can be found
with probability roughly q2 ·2−8n using a standard “birthday” attack. Thus,
to ensure k-bit security the output length of H must be at least 2k bits.

Multiple public keys I. If N instances of the LDWM scheme are run,
either by the same signer or by multiple signers, then security degrades
linearly in N . To see this, note that the ith public key pki has the form

pki = H(yi
0, · · · , yi

p−1) .

Consider computing the Q values y∗0 = F e(x∗0), . . . , y∗Q−1 = F e(x∗Q−1), for
distinct x∗i , and evaluating H on all (ordered) length-p lists of the y∗i . (There

are q def= Q!/(Q − p)! such lists. Note that eQ � q for “interesting” values
of Q, so the overall work is dominated by the q evaluations of H.) If any
of the resulting hashes is equal to some pki, then it becomes trivial to forge
arbitrary signatures with respect to that public key. The probability that
this occurs is roughly qN · 2−8n. In particular, to ensure k-bit security the
output length of H must be at least k + logN bits.

Multiple public keys II. A similar issue as above arises because F is used
in all instances of the scheme. Here we show that if N instances of the
LDWM scheme are run then security degrades linearly in pN .

Let pki, for 1 ≤ i ≤ N , denote the ith public key, and assume a signa-
ture with respect to each public key has been released so that, in particular,
values yi

0, . . . , y
i
p−1 with pki = H(yi

0, . . . , y
i
p−1) are known for all i. Con-

sider evaluating F e on q/e random inputs, looking for an input x such that

3

F e(x) = yi
j for some i, j. If such an x is found, a forgery becomes possible

with high probability.1 The probability that such an x is found is roughly
(q/e) · pN · 2−8m. (Small variants of this approach, having slightly better
parameters, are also possible.) Thus, to ensure k-bit security the output
length of F must be at least k + logN + log p− log e bits.

4 Suggested Improvements

As observed by Leighton and Micali [4], it is possible to achieve k-bit secu-
rity with reduced hash lengths by modifying the LDWM scheme. (Micali
and Leighton conjecture that these modifications achieve better concrete
security; we provide a proof in the appendix.)

The first modification is to have the signer choose a uniform value r at the
time of signing and then set h := H(r,M); the rest of the signing algorithm
remains the same, except that r is included as part of the signature. Now,
finding an arbitrary collision in H is not sufficient to forge a signature;
instead, given a signature on M using randomness r a signature forgery is
possible only if one can find r′,M ′ such that H(r′,M ′) = H(r,M). Given
r,M and evaluating H a total of q times, such values r′,M ′ can be found
with probability only q · 2−8n, suggesting that k-bit security is achieved if
the output length of H is k bits—half the size as before. (This assumes r is
long enough so that it is infeasible to guess it in advance; see further below.)

The discussion above assumes a single instance of the scheme. When
N instances of the scheme are used, however, security degrades by a factor
of N even if the above modification is used. This impacts both the required
length of the output of H as well as the length of r. Specifically:

• Say M i is signed by the ith instance of the scheme using random-
ness ri. A signature forgery is possible if one can find r′,M ′ such that
H(r′,M ′) = H(ri,M i) for any i. With q evaluations of H, this occurs
with probability roughly qN ·2−8n, implying that for k-bit security the
output length of H must be at least k + logN bits.

• Say values r,M, r′,M ′ (M ′ 6= M) are found withH(r,M) = H(r′,M ′),
and then a signature on M is obtained with respect to each of the N
instances of the scheme. A signature forgery (on M ′) is now possible
if any of those N signatures use randomness r; this occurs with prob-
ability roughly N · 2−|r|, implying that for k-bit security the length of
r must be at least k + logN bits.

1A precise calculation depends on the messages that have already been signed.

4

This motivates using another idea suggested by Leighton and Micali [4]:
ensuring that each evaluation of H and2 F by the (honest) signers is done
on an element from a distinct domain. This can be achieved by having each
signer prepend their identity, an instance number (in case the same signer
runs multiple instances of the scheme), and a 2-bit identifier to each H- or
F -evaluation. The identity and instance number are included as part of the
public key and used during signature verification.

We incorporate both the above modifications into the scheme described
next. Assume m ≤ n, and let H ′(x) be equal to H(x) truncated to 8m bits.
For an arbitrary string s, set F 1

s (x) def= H ′(s, 1, x), and for integer e > 1
define F e

s (x) def= H ′(s, e, F e−1
s (x)) where e is encoded using exactly w bits.

(F 0
s is still the identity function.)

Key generation
Let I denote the identity of the signer, and let num denote an instance
number. (We require that no signer uses the same instance number twice.)
We assume that I and num are each encoded using some fixed number of
bits. Key generation then proceeds as follows:

1. Choose p uniform values x0, . . . , xp−1 ∈ {0, 1}8m.

2. For i = 0 to p − 1, compute yi := F e
00,I,num,i(xi), where i is encoded

using some fixed number of bits.

3. Compute pk := H(01, I, num, y0, . . . , yp−1).

The public key is (I, num, pk), and the private key is sk = (I, num, x0, . . . , xp−1).

Signing
To sign M ∈ {0, 1}∗ using private key sk = (I, num, x0, . . . , xp−1) do:

1. Choose uniform r ∈ {0, 1}8m.

2. Compute h := H(11, I, num, r,M) and c := checksum(h). Set V :=
h‖c, and parse V as a sequence of w-bit integers V0, . . . , Vp−1.

3. For i = 0, . . . , p− 1, compute σi := F Vi
00,I,num,i(xi).

4. Return the signature σ = (r, σ0, . . . , σp−1).

2Note that F and H might be the same function.

5

Verifying
To verify a signature σ = (r, σ0, . . . , σp−1) on a message M ∈ {0, 1}∗ with
respect to the public key (I, num, pk) do:

1. Compute h := H(11, I, num, r,M) and c := checksum(h). Set V :=
h‖c, and parse V as a sequence of w-bit integers V0, . . . , Vp−1.

2. For i = 0, . . . , p− 1, compute yi := F e−Vi
00,I,num,i(σi).

3. Return 1 if and only if pk = H(01, I, num, y0, . . . , yp−1).

Looking again at the scenarios discussed earlier in light of the changes
above, we have:

• Say M i is signed using the ith instance of the scheme, using random-
ness ri. Now a signature forgery is possible by finding r′,M ′ such
that H(11, Ii, numi, r′,M ′) = H(11, Ii, numi, ri,M i) for some i, where
Ii, numi denote the values used in the ith instance. For q evaluations
of H, this occurs with probability q · 2−8n, suggesting that for k-bit
security the output length of H can be only k bits.

• Alternately, say r,M, r′,M ′ are found with H(11, Ii, numi, r,M) =
H(11, Ii, numi, r′,M ′) for some i, and then a signature on M is ob-
tained for the ith instance. A signature forgery is now possible if this
instance used randomness r; this occurs only with probability 2−|r|,
suggesting that the length of r can be only k bits.

In the appendix we provide a proof of security for the above scheme in the
random-oracle model, showing that an attacker making q hash queries is
able to forge a signature with probability at most 2q · 2−8m, regardless of
how many instances of the scheme are run. Note that this suggests setting
n = m, since no security is gained for n > m.

References

[1] J. Buchmann, E. Dahmen, and M. Szydlo. Hash-based digital signature
schemes. Technical Report, Technische Universitat Darmstadt, 2008.

[2] J. Katz and Y. Lindell. Introduction to Modern Cryptography, 2nd edi-
tion. Chapman & Hall/CRC Press, 2014.

[3] L. Lamport. Constructing digital signatures from a one-way function.
Tehcnical Report SRI-CSL-98, SRI Intl. Computer Science Laboratory,
1979.

6

[4] F.T. Leighton and S. Micali. Large provably fast and secure digital sig-
nature schemes based on secure hash functions. US Patent 5,432,852,
July 11, 1995.

[5] D. McGrew and M. Curcio. Hash-based signatures. Internet Draft draft-
mcgrew-hash-sigs-02, July 4, 2014.

[6] R.C. Merkle. Secrecy, authentication, and public-key systems. PhD The-
sis, Stanford University, 1979.

[7] R.C. Merkle. A certified digital signature. Advances in Cryptology—
Crypto ’89, LNCS vol. 435, pages 218–238, Springer-Verlag, 1989.

7

A Proof of Security

We prove security of the scheme when H is modeled as a random oracle. Let
t be an upper bound on the number of instances of the scheme overall. This
means we have some set {(Ii, numi)}ti=1 of identity/instance number pairs,
where (Ii, numi) 6= (Ij , numj) for i 6= j. We let idi = (Ii, numi) denote the
identifier for the ith instance. These identifiers could be chosen adaptively
by the attacker (subject to being distinct) without any significant change to
the proof below, but for simplicity we treat them as fixed in advance.

We are interested in bounding the attacker’s success probability in the
following experiment:

1. A random function H : {0, 1}∗ → {0, 1}8n is chosen.

2. For i = 1 to t, the key-generation algorithm is run using identifier idi

to obtain (pki, ski). The attacker is given (id1, pk
1), . . . , (idt, pk

t).

3. The attacker is given oracle access to H. In addition, it is given access
to a signing oracle Sign(·, ·) such that Sign(i,M) returns a signature
on M computed using private key ski. For each i, the attacker may
make at most one query Sign(i, ?).

Without loss of generality we assume the attacker makes exactly one
signing query Sign(i,M i) for each value of i. We also assume that when
the attacker is given a signature, it is additionally given the answers
to all the H-queries needed to verify that signature.

4. The attacker outputs (i,M, σ) with M 6= M i. The attacker succeeds
if σ is a valid signature on the message M with respect to idi, pk

i.

Without loss of generality we assume that the attacker has previously
made (or has been given the answers to) all the H-queries needed to
verify σ on M with respect to idi, pk

i.

An equivalent way of viewing the above experiment is as follows (we
use ‖ for string concatenation when using commas would cause confusion):

1. Initialize an empty set H. (H will contain defined query/answer pairs
for the function H. That is, if (x, y) ∈ H then H(x) = y.3)

3The range of H is {0, 1}8n but in some cases we only care about the output of H
truncated to 8m bits. In such cases, we allow (x, y) ∈ H with y ∈ {0, 1}8m.

8

2. Do the following for i ∈ {1, . . . , t}:

(a) For j = 0, . . . , p − 1, choose uniform xi
j ∈ {0, 1}8m and define

xi
j,0 := xi

j .

(b) For j = 0, . . . , p−1 and k = 1, . . . , e, choose uniform xi
j,k ∈ {0, 1}8m

and add
(

00‖idi‖j‖k‖xi
j,k−1, x

i
j,k

)
to H. Define yi

j := xi
j,e.

(c) Choose uniform pki ∈ {0, 1}8n. Add
(
01‖idi‖yi

0‖ · · · ‖yi
p−1, pk

i
)

to H.

(d) Choose uniform ri ∈ {0, 1}8m and hi ∈ {0, 1}8n.

(e) Give (idi, pk
i) to the attacker.

3. When the attacker makes a query H(x), answer it as follows:

(a) If there is an entry (x, y) ∈ H for some y, then return y.

(b) Otherwise, if x begins with 00 then choose uniform y ∈ {0, 1}8m

and in any other case choose uniform y ∈ {0, 1}8n. Return y to
the attacker, and store (x, y) in H.

4. When the attacker makes a query Sign(i,M i), answer it as follows:

(a) (Recall that hi was defined in step 2(d).) If there is an entry
(11‖idi‖ri‖M i, h) ∈ H for some h, then redefine hi := h. Other-
wise, store (11‖idi‖ri‖M i, hi) in H.

(b) Let ci := checksum(hi), and set V i := hi‖ci. Parse V i as a
sequence of w-bit integers V i

0 , . . . , V
i
p−1.

(c) Return the signature (ri, xi
0,V i

0
, . . . , xi

p−1,V i
p−1

).

5. The attacker outputs (i,M, σ) with M 6= M i. The attacker succeeds
if σ is a valid signature on the message M with respect to idi.

We define the following events in the above experiment:

• Coll1,i is the event that the attacker ever queries H(01, idi, y0, . . . , yp−1)
with (y0, . . . , yp−1) 6= (yi

0, . . . , y
i
p−1), and receives the response pki.

• Coll2,i is the event that the attacker ever queries H(11, idi, r
i, ?) before

making the query Sign(i, ?).

9

• Coll∗2,i is the event that either Coll2,i occurs, or either of the following
occur: (1) before making the query Sign(i, ?), the attacker ever queries
H(11, idi, ?, ?), and receives the response hi, or (2) after making the
query Sign(i,M i), the attacker ever queries H(11, idi, ?,M) with M 6=
M i, and receives the response hi. Note that Coll2,i ⊆ Coll∗2,i.

• Coll3,i,j,k is the event that the attacker queries H(00, idi, j, k + 1, xi
j,k)

either before making the query Sign(i, ?), or after making the query
Sign(i, ?) but with k < V i

j .

• Coll∗i,j,k is the event that either Colli,j,k occurs, or the attacker queries
H(00, idi, j, k + 1, x) with x 6= xi

j,k and receives the response xi
j,k+1.

Note that Coll3,i,j,k ⊆ Coll∗3,i,j,k.

We first observe that the probability of forgery can be upper-bounded
by the probablity that one of the above events occurs.

Claim 1. If the attacker succeeds, then either Coll1,i or Coll∗2,i occur for
some i, or else Coll∗i,j,k occurs for some i, j, and 0 ≤ k < e.

Proof. Say the attacker outputs (i,M, σ) with M 6= M i and σ a valid sig-
nature on M with respect to idi, pk

i. Recall that, by assumption, all the
H-queries needed to verify σ on M with respect to idi, pk

i must be defined
when the attacker outputs (i,M, σ). Parse σ as (r, σ0, . . . , σp−1), define
h = H(11, idi, r,M) and c = checksum(h), and let V0, . . . , Vp−1 = h‖c and
yj = F

e−Vj

00,idi,j
(σj) be the values computed by running the verification algo-

rithm with respect to idi, pk
i on the message M and signature σ. Since the

attacker succeeds we have H(01, idi, y0, . . . , yp−1) = pki.
We show that if Coll1,i and Coll∗2,i have not occurred, then Coll∗i,j,k must

have occurred for some j, k. If Coll1,i has not occurred, we must have
(y0, . . . , yp−1) = (yi

0, . . . , y
i
p−1). If Coll∗2,i (and hence Coll2,i) has not oc-

curred, the value of hi was not changed during the experiment, and we must
also have h 6= hi. By construction of checksum, we must therefore have
Vj < V i

j for some j. But then one can verify by inspection that Coll∗3,i,j,k

must have occurred for some k.

Thus, to bound the success probability of the attacker it suffices to bound
the probabilities of the above events. Let q be an upper bound on the number
of H-queries made by the attacker, and for an arbitrary string s let qs denote
the number of queries made by the attacker of the form H(s, ?). If S is a
set of strings none of which is a prefix of any other, then

∑
s∈S qs ≤ q.

10

Claim 2. For all i, Pr[Coll1,i] ≤ q01‖idi
· 2−8n.

Proof. Note that each time the attacker queries H(01, idi, y0, . . . , yp−1) with
(y0, . . . , yp−1) 6= (yi

0, . . . , y
i
p−1), the value returned is uniformly distributed

in {0, 1}8n and independent of pki. The claim follows.

Claim 3. For all i, Pr[Coll2,i] ≤ q11‖idi
· 2−8m.

Proof. Note that ri is a uniform 8m-bit string, and the attacker has no
information about ri until it queries Sign(i, ?). The claim follows.

Claim 4. For all i, Pr[Coll∗2,i] ≤ q11‖idi
· (2−8m + 2−8n).

Proof. We have Pr[Coll∗2,i] ≤ Pr[Coll2,i] + Pr[Coll∗2,i | ¬Coll2,i]. The previ-
ous claim provides an upper bound on the first term. As for the second
term, when Coll2,i does not occur, the value of hi does not change during
the experiment. Each time the attacker queries H(11, idi, ?, ?) before mak-
ing the query Sign(i, ?), or queries H(11, idi, ?,M) with M 6= M i after the
query Sign(i,M i), the value returned is uniformly distributed in {0, 1}8n and
independent of hi. The claim follows.

Claim 5. For all i, j, k,

Pr
[
Coll3,i,j,k |

∧k−1
`=0 ¬Coll∗3,i,j,`

]
≤ q00‖idi‖j‖k+1 · 2−8m.

Proof. When Coll∗3,i,j,k−1 does not occur, the attacker gets no information
about xi

j,k until it queries H(00, idi, j, k+1, xi
j,k) or Sign(i,M i) with V i

j ≤ k.
In the latter case Coll3,i,j,k cannot occur once the signature query is made.
Since xi

j,k is uniform in {0, 1}8m, the claim follows.

Claim 6. For all i, j, k,

Pr
[
Coll∗3,i,j,k |

∧k−1
`=0 ¬Coll∗3,i,j,`

]
≤ 2 · q00‖idi‖j‖k+1 · 2−8m.

Proof. We have

Pr
[
Coll∗3,i,j,k |

∧k−1
`=0 ¬Coll∗3,i,j,`

]
≤ Pr

[
Coll3,i,j,k |

∧k−1
`=0 ¬Coll∗3,i,j,`

]
+ Pr

[
Coll∗3,i,j,k |

∧k−1
`=0 ¬Coll∗3,i,j,`

∧
¬Coll3,i,j,k

]
.

The previous claim provides an upper bound on the first term. As for
the second term, note that when Coll3,i,j,k does not occur then whenever
the attacker queries H(00, idi, j, k + 1, ?), the value returned is uniformly
distributed in {0, 1}8m independent of xi

j,k+1. The claim follows.

11

Claim 7. For all i, j, Pr
[∨e−1

k=0 Coll∗3,i,j,k

]
≤
∑e−1

k=0 2 · q00‖idi‖j‖k+1 · 2−8m.

Proof. We have

Pr
[∨e−1

k=0 Coll∗3,i,j,k

]
≤

e−1∑
k=0

Pr
[
Coll∗3,i,j,k |

∧k−1
`=0 ¬Coll∗3,i,j,`

]
≤

e−1∑
k=0

2 · q00‖idi‖j‖k+1 · 2−8m,

using the previous claim.

Putting everything together, we have:

Theorem 8. For any adversary attacking arbitrarily many instances of the
one-time signature scheme, and making at most q hash queries, the proba-
bility with which the adversary is able to forge a signature with respect to
any of the instances is at most 2q/28m.

Proof. Let t denote the number of instances of the scheme. Using Claim 1
and a union bound, the probability with the the adversary forges a signature
is at most∑t

i=1 Pr[Coll1,i] +
∑t

i=1 Pr[Coll∗2,i] +
∑t

i=1

∑p−1
j=0 Pr

[∨e−1
k=1 Coll∗3,i,j,k

]
.

Using Claims 2, 4, and 7, the above is at most∑t
i=1 q01‖idi

· 2−8n +
∑t

i=1 q11‖idi
· 2−8m

+
∑t

i=1

∑p−1
j=0

∑e−1
k=0 2 · q00‖idi‖j‖k+1 · 2−8m

≤ q01 · 2−8n + q11 · 2−8m + 2 · q00 · 2−8m

≤ 2 · q · 2−8m,

as claimed.

12

