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Abstract

Network coding offers increased throughput and improved robustness to random faults in
completely decentralized networks. Since it does not require centralized control, network coding
has been suggested for routing packets in ad-hoc networks, for content distribution in P2P file
systems, and for improving the efficiency of large-scale data dissemination over the Internet.

In contrast to traditional routing schemes, however, network coding requires intermediate
nodes to process and modify data packets en route. For this reason, standard signature schemes
are inapplicable and it is therefore a challenge to provide resilience to tampering by malicious
nodes in the network. Here, we propose a novel homomorphic signature scheme that can be used
in conjunction with network coding to prevent malicious modification of data. The overhead of
our scheme is small and independent of the file or packet size: both public keys and signatures
in our scheme consist of only a single group element.

1 Introduction

Network coding [1, 21] refers to a general class of routing mechanisms where, in contrast to more
traditional “store-and-forward” routing, intermediate nodes may be required to process and modify
the data packets in transit. Network coding has been shown to offer a number of advantages with
respect to traditional routing, most well-known of which is the possibility of increased throughput
in certain network topologies (see, e.g., [18] for measurements of the improvement network coding
gives in practice even for unicast traffic). It has also been suggested as a means of improving
robustness to random network failures since, as with erasure codes [5], the destination can recover
the original data (with high probability) once it has received sufficiently-many correct packets even
if a large fraction of packets are lost.

Because of its advantages, network coding has been proposed for applications in wireless and/or
ad-hoc networks, where communication is at a premium and centralized control may be unavailable;
it has also been suggested as an efficient means for content distribution in peer-to-peer networks [20],
and for improving the performance of large-scale data dissemination over the Internet [10].

A major concern in systems that use network coding is to provide protection against malicious
modification of packets (i.e., “pollution attacks”) by Byzantine nodes in the network; see [11, 19] for
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two recent surveys and Section 2.2 for a more complete discussion of previous work. The problem
is particularly acute because errors introduced into even a single packet can propagate and pollute
multiple packets making their way to the destination. (This is a consequence of the processing that
honest nodes, downstream of any corrupted packets, apply to all incoming packets.)

In this work, we construct a novel homomorphic signature scheme that can be used to provide
cryptographic protection against pollution attacks even when the adversary can corrupt an arbitrary
number of nodes in the network, eavesdrop on all network traffic, and insert/modify an arbitrary
number of packets. Of course, the destination cannot possibly recover the file unless it receives
a minimum number of uncorrupted packets; as long as this is the case, however, our scheme
ensures that the destination can filter out any corrupted packets and hence recover the correct
file. As our signatures are publicly verifiable, intermediate nodes could discard corrupted packets
as well (though whether this is actually done will depend on the computational resources of the
intermediate nodes). The primary improvement of our scheme relative to prior work [7, 24] is that
public keys and signatures in our scheme are constant size whereas in previous scheme these had
size roughly the square root of the file size. Our scheme has other advantages as well; we defer a
more detailed discussion to Section 2.3.

Work whose aim is to ensure the secrecy of data sent using network coding [6, 9] is orthogonal
to our work, which is focused only on data integrity.

Outline of the paper. We do not assume any background in network coding, and so provide a
quick overview of the relevant details in Section 2.1. In Section 2.2 we discuss prior work addressing
adversarial behavior in the context of network coding, and we describe the advantages of our scheme
(and compare it to prior work) in Section 2.3. In the remainder of the paper we introduce an
appropriate definition of security, propose our new signature scheme, and prove our scheme secure.

2 Background

2.1 Linear Network Coding

In a linear network coding scheme [21] (the only type with which we will be concerned in this
work), a file to be transmitted is viewed as an ordered sequence of vectors v̄1, . . . , v̄m ∈ F

n
p ; we

will sometimes refer to individual vectors as blocks of the file. Before transmission, the source node
creates the m augmented vectors v1, . . . ,vm given by:

vi = (

m
︷ ︸︸ ︷

0, . . . , 0, 1
︸ ︷︷ ︸

i

, 0, . . . , 0, v̄i) ∈ F
m+n
p ;

i.e., each original vector v̄i is pre-pended by the vector of length m containing a single ‘1’ in the
ith position. These augmented vectors are then sent by the source as packets in the network.

Each node in the network processes packets as follows. Upon receiving packets (i.e., vectors)
w1, . . . ,wk ∈ F

m+n
p on its k incoming communication edges, a node computes the packet (vector)

w =
∑k

j=1
αi,j ·wj, where each αi,j ∈ Fp. The resulting vector w is then transmitted on the node’s

outgoing edges. That is, each node transmits a linear combination of the packets it receives. In a
fault-free execution of the scheme, then, all packets transmitted on any communication link in the
network are linear combinations of the original (augmented) file vectors v1, . . . ,vm.
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The weights αi,j used by the ith node in the network can be established by a central authority
who knows the network topology. More usefully (and more interestingly), however, these values
can also be chosen randomly and independently by each node in a completely decentralized fashion,
and without any knowledge of the network topology. (In the latter case, the scheme is sometimes
referred to as “random network coding”.) Although carefully-designed codes can potentially have
better performance, it has been shown that random network coding does almost as well with high
probability [8, 12, 13].

Note that there may be multiple destination nodes (i.e., receivers) who wish to obtain the orig-
inal file from the source. When any such node receives m linearly-independent vectors w1, . . . ,wm,
it can recover the original file as follows: For a received vector wi, let wL

i denote the left-most m
positions of the vector, and let wR

i denote the right-most n positions. The receiver first computes
a matrix G such that

I = G ·






wL
1

...
wL

m




 ,

where I denotes the m×m identity matrix. The original file v̄1, . . . , v̄m is then given by





v̄1

...
v̄m




 = G ·






wR
1

...
wR

m




 .

We stress that the receiver need not be aware of the weights {αi,j} used by any node in the
network in order to recover the file. On the other hand, if the weights used by the intermediate
nodes are all known to the receiver (and the receiver is aware of the network topology) then the
matrix G can be computed in advance and, in fact, the scheme can be run on the original file
vectors v̄1, . . . , v̄m rather than on the augmented vectors v1, . . . ,vm. In our work, however, we
will assume that augmented vectors are used; in fact, for security purposes, we will see that these
augmented vectors are necessary.

2.2 Dealing with Adversarial Behavior

Network coding can offer resilience to random packet loss since the receiver can reconstruct the
original file from any set of m correctly-formed, linearly-independent vectors. (Notice the similarity
with linear erasure codes introduced in other contexts, e.g., [5].) However, the in-network processing
done by the nodes makes the basic network coding scheme extremely susceptible to malicious errors
introduced by even a single intermediate node in the network. For starters, this is because the basic
network coding scheme offers no means of isolating the fault: if one of the vectors wi received at the
destination is incorrect, then that error will be “spread” across (potentially) every block v̄1, . . . , v̄m

of the reconstructed file. Furthermore, a single error introduced by one malicious node will be
propagated by every node further downstream. Thus, even a faulty transmission on a single edge
(say, due to a single corrupted node) will eventually cause almost all vectors being forwarded in
the network to be incorrect, and will thus prevent reconstruction of even a portion of the file.

It is worth mentioning two trivial approaches that do not solve the problem. A first thought
is for the source to simply sign each packet that it releases into the network. This approach fails
completely, as the packets received by the receiver are, in general, different from those issued by
the sender. (The only guarantee is that correctly-formed packets should be a linear combination of
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the vectors packets transmitted by the sender.) Thus, this approach is simply incompatible with
network coding.

A second naive idea is for the source to sign the entire file; the resulting signature could either
be appended to the file itself and transmitted using network coding, or sent separately. Although
this would ensure that the receiver never accepts an incorrect file, the problem with this approach is
that there is no computationally-efficient way for the receiver to recover the correct file in the first
place. To see this, suppose the receiver has the sender’s signature on the file and receives t packets,
out of which m′ ≥ m are correctly formed. Since the receiver cannot distinguish correct packets
from corrupt packets a priori, it is forced to apply the reconstruction procedure from Section 2.1
to roughly

( t
m

)
sets of m linearly-independent vectors before it will recover the correct file. We see

from this example that an approach whereby the receiver can detect (and discard) corrupt packets
immediately is advantageous.

Having rejected the above simplistic approaches, we survey other techniques for combatting data
pollution when network coding is used (see [19] for further discussion regarding existing approaches).
For the purposes of our work, we separate existing techniques into two categories: information-
theoretic and computational.

Information-theoretic approaches. Information-theoretic methods for enabling recovery from
malicious faults are possible by introducing redundancy into the original packets transmitted by
the sender [14, 15, 16]; in essence, these techniques compose an “inner” error-correcting code with
the “outer” network coding scheme, and the destination node reconstructs the file by applying
error correction to a set of sufficiently-many received packets. Such techniques do not rely on any
computational assumptions, but can inherently offer security only against a relatively limited class
of adversaries. Specifically, if we let C denote the maximum achievable flow in the network (in the
absence of adversarial behavior) and assume the adversary can eavesdrop on the entire network,
then the (optimal) scheme of [16] tolerates at most C/2 corrupted links, and correspondingly even
fewer corrupted nodes. Under the assumption that the adversary can eavesdrop on at most ze links,
the (optimal) scheme of [16] tolerates at most min{C, 1

2
·(C−ze)} corrupted links. More importantly,

the communication overhead introduced by these schemes is significant, thus potentially mitigating
the advantages of network coding in the first place.

Cryptographic approaches. Existing cryptographic schemes (i.e., those that protect only against
a computationally-bounded adversary) all work by providing a way for honest nodes to verify au-
thenticity of individual packets. (Once again, we stress that this is not achieved in our setting
by having the source sign each packet, since packets are modified in transit.) Cryptographic
schemes can potentially offer resilience against an adversary who eavesdrops on the entire net-
work and controls an arbitrary fraction of malicious nodes, as long as the destination node receives
m correctly-formed and linearly-independent vectors. They also allow the receiver to recover grace-
fully even when fewer than m legitimate vectors are received; for example, if the destination receives
k correctly-formed vectors spanning the subspace defined by the first k blocks of the file, then the
receiver can at least recover a portion of the original file. Finally, cryptographic schemes have the
additional advantage that intermediate nodes in the network can verify correctness of individual
packets, and hence reject ill-formed ones.

Although one could imagine using a symmetric-key approach, all existing work focuses on the
public-key setting where the sender has a public key known to all other nodes in the network. A
public-key scheme makes the most sense when the sender is multicasting files to many receivers in
the network (as is typically the situation when network coding is used), and furthermore enables
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all intermediate nodes in the network to potentially verify authenticity of received packets.
Homomorphic hashing [20, 10] is one suggestion for preventing pollution attacks. In the scheme

of Krohn et al. [20], the sender computes a hash hi = H(v̄i) of each block of the file; given h1, . . . , hm,
anyone can check whether a network-coded packet w is a correctly-formed linear combination of the
augmented vectors {vi}. (We stress that all m hash values are needed in order to verify authenticity
of a packet, in general.) Barring a reliable channel from the sender to the destination, the hash
values {hi} must be signed by the sender (using a standard signature scheme) and transmitted in
the network. If all m hash values are sent along with each vector — and not modified en route —
then this introduces an overhead of O(m) group elements per packet. On the other hand, if the hash
values are partitioned among multiple packets then intermediate nodes cannot verify authenticity
of the packets they receive and the destination cannot verify authenticity of packets until it has
received all m hash values. The sender’s public key in their scheme contains O(n) group elements;
thus, either the public key or the “authentication information” {hi} have size at least the square
root of the file size. We remark that Krohn et al. also suggest a recursive version of their basic
scheme, but the recursive scheme does not overcome the above problems.

Most related to our work, two previous papers [7, 24] design signature schemes that are specif-
ically suited to network coding. Charles et al. [7] present a homomorphic signature scheme [17]
with the property that valid signatures σ1, . . . , σk on vectors w1, . . . ,wk can be combined, without
knowledge of the signer’s secret key, to produce a valid signature σ on any linear combination
∑

i αiwi. Their scheme can only be used to sign a single file, after which the public key must be
refreshed; this clearly limits applicability of their solution. Public keys in their scheme have size
O(k ·(m+n)), where k is a cryptographic security parameter, meaning that it will be impractical to
re-distribute public keys over the network even if network coding is used for public-key distribution.
We remark that Charles et al. do not give formal definitions or proofs of security in their paper.

Zhao et al. [24] also present a scheme for making network coding resilient to the injection
of false packets. Their approach, roughly speaking, is to authenticate the vector space V =
span{v1, . . . ,vm}; this results in authentication information x that can be used to verify that
w ∈ V for any received packet w. (The authentication information x must be signed by the sender
using a standard signature scheme.) The most significant drawback of their work is that both the
authentication information x and public keys in their scheme have size O(k · (m + n)), which is at
least the square root of the file size. Their scheme, too, is not immediately suited for distributing
more than one file using the same public key; though they suggest some approaches for handling
multiple files, they do not prove security of any of these suggestions. An additional drawback
of their signature scheme is that it requires the sender to know the entire file in advance, before
the authentication information can be computed. This limits the applicability of their scheme for
transmission of streaming data, where the sender transmits packets as they are generated rather
than buffering them and transmitting them all at once. (This problem remains, though to a lesser
extent, even if the sender transmits a file in several generations. In that case, the sender must
wait until all the data for a given generation is known before it can compute the authentication
information for that generation.)

To summarize: all prior approaches for achieving cryptographic security introduce a communi-
cation overhead of at least the square root of the file size, if authentication of multiple files using a
single public key is desired. Here, we will show a homomorphic signature scheme with constant-size
signatures and public keys.

5



2.3 Our Contribution

We propose a new homomorphic signature scheme that can be used to authenticate packets for
network coding, and prove its security in the random oracle model based on the computational
Diffie-Hellman assumption in bilinear groups. Security is proved relative to a definition, introduced
here, that guarantees exactly the security desired in our setting: roughly speaking, given a collection
of m signatures corresponding to the m vectors {v1, . . . ,vm} defining a file, an adversary can

generate a valid signature for any vector in V
def
= span{v1, . . . ,vm} but is unable to forge a valid

signature on any vector not in V . (Actually, both our security definition and our construction
directly take into account the distribution of multiple files using a single public key — in contrast
to [7, 24] — and so the formal definition is a bit more involved.) Our scheme also supports
the transmission of streaming data, i.e., the source need not be aware of the entire file before
transmitting the first packet.

The primary advantage of our work as compared to prior work is that both public keys and
signatures in our scheme have constant size; in fact, our signatures consist of only a single group
element while public keys also contain only a single group element in addition to some parameters
that can be shared among multiple users. This is a significant improvement of prior work in
which the public key and/or authentication information had size at least the square root of the file
size. From a computational point of view, our scheme is only slightly more expensive than prior
work. Specifically, signature verification in our scheme requires m + n exponentiations and one
pairing computation; this is the same as the scheme of [7], whereas the scheme of Zhao et al. [24]
requires m+n exponentiations plus verification of a standard signature. (The homomorphic hashing
approach of [20] requires m exponentiations plus verification of a standard signature, but has various
drawbacks as discussed in the previous section.)

In contrast to information-theoretic schemes for achieving resilient network coding [15, 16],
our scheme is resilient to an arbitrary number of faults (as long as a minimum number of correct
packets reach the receiver) and has substantially lower communication overhead. On the other hand,
the computational requirements of our scheme are higher, and security is proven only relative to
unproven (but standard) cryptographic assumptions.

3 Definitions and Preliminaries

3.1 Cryptographic Preliminaries

The security of our scheme is based on the (standard) computational Diffie-Hellman assumption
but in a group where a bilinear map is defined (and so the decisional Diffie-Hellman problem is
easy); we review the relevant definitions here. (As in [4], our construction extends naturally to
the case of a bilinear map defined over two different groups; we use the current formulation for
simplicity of exposition only.) Let G1 and G2 be two cyclic groups of prime order p and such that
there exists an efficiently-computable bilinear map ê : G1×G1 → G2. Here, bilinearity means that
for all g, h ∈ G1 and all α, β ∈ Zp we have ê(gα, hβ) = ê(g, h)αβ .

A BDH parameter generator IG is a randomized, polynomial-time algorithm that takes as input
a security parameter 1k and outputs the description of two groups G1, G2 and a map ê satisfying
the above conditions (we assume p, the group order, is implicit in G1, G2). The computational
Diffie-Hellman problem with respect to IG is the following: given (G1, G2, ê) output by IG along
with random g, gα, h ∈ G1, compute hα. We say that IG satisfies the computational Diffie-Hellman
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assumption if the following probability is negligible (in k) for all ppt algorithms A:

Pr

[
(G1, G2, ê)← IG(1

k);
g, h← G1;α← Zp

: A(G1, G2, ê, g, gα, h) = hα

]

.

BDH parameter generators believed to satisfy the above assumption can be constructed from mod-
ified Weil or Tate pairings associated with elliptic curves or Abelian varieties. As our results do
not depend on any specific instantiation, we refer the interested reader to [2, 4] for details.

3.2 Definitions Specific to Our Setting

Rather than appeal to the general definition of homomorphic1 signature schemes [17], we introduce
definitions of functionality and security specific to our setting. We refer to the primitive under
study as a signature scheme for linear subspaces. As discussed previously, we want our scheme to
be useful for the distribution of multiple files using the same public key. As such, we will modify
the network coding scheme as described in the Introduction in the following, simple way: every
file will be associated with an identifier id that is chosen by the sender at the time the first packet
associated with the file is transmitted.2 We then require that every packet forwarded in the system
is labeled with the appropriate identifier. (Adversarial nodes, of course, can change the identifier
any way they like.) This just provides a way for honest nodes, and especially the receiver, to
distinguish packets associated with different files.

Definition 1 A signature scheme for linear subspaces is defined by a tuple of probabilistic,
polynomial-time algorithms (Gen,Sign,Combine,Vrfy) such that:

• Gen takes as input the security parameter 1k in unary, and outputs a pair of public and
private keys (pk, sk). The public key defines a prime p and integers m and n.

• Sign takes as input the secret key sk, an identifier id ∈ {0, 1}∗, and a vector v ∈ F
m+n
p . It

outputs a signature σ. We write this as σ ← Signsk(id,v).

• Combine takes as input the public key pk, an identifier id, a set of weights β1, . . . , βℓ ∈ Fp, and
a sequence of vectors v1, . . . ,vℓ ∈ F

m+n
p along with their signatures σ1, . . . , σℓ. It outputs a

signature σ.

• Vrfy takes as input the public key pk, an identifier id, a vector v ∈ F
m+n
p , and a signature σ. It

outputs a boolean value indicating acceptance or rejection. We write this as Vrfypk(id,v, σ).

Furthermore, the following correctness conditions must hold for all (pk, sk) output by Gen:

• For all id ∈ {0, 1}∗, it holds that Vrfypk(id,v,Signsk(id,v)) = 1.

• For any id ∈ {0, 1}∗, any ℓ > 0, any weights β1, . . . , βℓ ∈ Fp, and any collection of vectors
v1, . . . ,vℓ and signatures σ1, . . . , σℓ, if it holds that

∀i : Vrfypk(id,vi, σi) = 1 ,

1Johnson et al. [17] introduce the general notion of homomorphic signatures, but their work does not give signature
schemes satisfying Definition 1.

2One can think of this identifier as being equivalent to a filename. For our proof of security, we require that
identifiers be unpredictable (they need not be random); this can be achieved easily by concatenating an arbitrary
filename with a short random string.
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then it must be the case that

Vrfypk

(

id,
∑

i βivi, Combinepk

(
id, {βi}, {vi}, {σi}

))

= 1.

In the absence of malicious behavior, a signature scheme of the above type would be used
as follows: Given a file, viewed as a sequence of m vectors v̄1, . . . , v̄m ∈ F

n
p , the sender would

prepare the augmented vectors v1, . . . ,vm ∈ F
m+n
p as described in the Introduction. The sender

will then choose an identifier id and compute σi ← Signsk(id,vi). Finally, it will inject packets
(id,v1, σ1), . . . , (id,vm, σm) into the network. Observe that the entire file need not be known before
the signer generates a signature on the first vector in the file; the signer only needs to keep track
of the file identifier until the entire file is processed.

An intermediate node in the network receiving packets (id1,v1, σ1), . . . , (idℓ,vℓ, σℓ) would, ide-
ally, first verify the integrity of each of these packets by computing Vrfypk(idi,vi, σi) and discarding
any packets which failed this step. The node would group the remaining packets by their identifers,
and compute a linear combination of vectors associated with the same identifier as described in
the Introduction. Along with this, it would also apply the Combine algorithm in order to produce
valid signatures for each resulting vector. It then forwards the resulting vectors, along with their
appropriate identifiers and signatures, to the next hop.

The destination node recovers a file in the obvious way: it first collects all packets with a given
identifier, and discards any packets whose signatures do not verify correctly. It then reconstructs
the file exactly as described in the Introduction. We remark that the receiver can begin decoding
the file as soon as it begins to receive packets. (For example, using the same notation as in the
Introduction, as soon as the receiver obtains correctly-generated packets w1, . . . ,wk for which
(1, 0, . . . , 0) is in the span of wL

1 , . . . ,wL
k , the receiver can recover the first block of the file.)

Note: The definition above assumes that all files contain the same number of blocks m. This
is, of course, without loss of generality since a shorter file can always be padded. Moreover,
our construction easily generalizes to support shorter files, without introducing any overhead, by
incorporating the file length into the identifier.

We now present our definition of security. For notational convenience, we identify a file with
a vector (sub)space V ⊂ F

m+n
p . (In practice, V will just be the vector space spanned by the

augmented vectors v1, . . . ,vm constituting the file. In our definition of security, however, we do
not force the adversary to use m-dimensional subspaces but instead allow the adversary to specify
a subspace of arbitrary dimension.) The adversary may request signatures for a series of files; in
response to the ith such request, the signer chooses a random3 identifier idi ∈ {0, 1}

k , generates
signatures on the blocks of the given file with respect to that identifier, and gives the resulting
signatures to the adversary. This defines a sequence (id1, V1), . . . , (idℓ, Vℓ) of identifiers and their
corresponding subspaces/files. The adversary succeeds if it is able to output an identifier id∗, a
vector v∗, and a signature σ∗ such that Vrfypk(id

∗,v∗, σ∗) = 1 and v∗ is not a vector lying in the
appropriate subspace (see the definition for details). A scheme is secure if every polynomial-time
adversary succeeds with only negligible probability.

Definition 2 A signature scheme for linear subspaces is existentially unforgeable under adaptive
chosen-message attacks (or simply secure) if for every probabilistic, polynomial-time adversary F ,
the probability that F succeeds in the following experiment is negligible in the security parameter k:

3Recall that we only need identifiers to be unpredictable. Thus, even if the adversary has some control over the
filename, we can achieve this condition by having the signer append a random k-bit string to the filename.
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1. Gen(1k) is run to obtain (pk, sk), and the public key pk is given to F .

2. F may then adaptively request signatures on files of its choice. Recalling that we identify
files with vector subspaces of F

m+n
p , each such query is handled as follows:

• F specifies a vector space V by giving a basis v1, . . . ,vt ∈ F
m+n
p , where 1 ≤ t ≤ m + n.

(For application to network coding, the signer would never sign a “vector space” of
dimension greater than m but we allow it in our definition.)

• A random id ∈ {0, 1}k is chosen, and then F is given the t signatures Signsk(id
∗,v1), . . .,

Signsk(id
∗,vt).

If F makes a total of ℓ queries, this defines a sequence (id1, V1), . . . , (idℓ, Vℓ) of ℓ identifiers
and their associated subspaces.

3. Finally, F outputs (id∗,v∗, σ∗). It succeeds if Vrfypk(id
∗,v∗, σ∗) = 1 and either (1) id∗ 6∈

{id1, . . . , idℓ} and v∗ 6= ~0 or (2) for some i it holds that id∗ = idi, but v∗ 6∈ Vi.

4 Our Construction

Our construction is somewhat similar to both the BLS (standard) signature scheme [4] as well as
the BGLS aggregate signature scheme [3]. The scheme of Charles et al. [7] is also adapted, in a
different way, from the BGLS scheme; as noted earlier, however, the scheme of Charles et al. only
allows for the distribution of one file per public key, and the public key in their scheme has size
O(m + n) (and does not seem to be compressible even in the random oracle model). Our scheme
is also similar, but not identical, to a signature scheme used recently by Shacham and Waters [22]
in a different context.

Our scheme is defined as follows:

• Gen(1k) runs IG(1k) to generate parameters (G1, G2, ê), where G1 and G2 have prime order p.
It then chooses g, h← G1 and α← Zp. The public key is (g, gα) and the secret key is α. We
also assume a hash function H : {0, 1}∗ → G1 that will be modeled as a random oracle in our
security proof. (Note that (G1, G2, ê, g,H) could be shared among multiple signers.)

• Signsk(id,v), where v = (v1, . . . , vm+n) ∈ F
m+n
p , outputs the signature

σ =

(
m+n∏

i=1

H(id‖i)vi

)α

,

where “‖” denotes concatenation.

• Combine, given as inputs an identifier id, a set of weights β1, . . . , βℓ ∈ Fp, and a sequence
of vectors v1, . . . ,vℓ ∈ F

m+n
p along with their signatures σ1, . . . , σℓ, outputs the signature

σ =
∏ℓ

i=1 σβi

i on the vector v =
∑ℓ

i=1 βi · vi.

• Vrfypk(id,v, σ), where pk = (g, y) and v = (v1, . . . , vm+n) ∈ F
m+n
p , outputs 1 iff

ê(g, σ)
?
= ê

(

y,

m+n∏

i=1

H(id‖i)vi

)

.
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Correctness. Consider a signature σ output by Signsk(id,v). We have

ê(g, σ) = ê

(

g,

(
m+n∏

i=1

H(id‖i)vi

)α)

= ê

(

gα,

m+n∏

i=1

H(id‖i)vi

)

= ê

(

y,
m+n∏

i=1

H(id‖i)vi

)

,

and so Vrfypk(id,v, σ) = 1. As for the Combine algorithm, say σ ← Combine(id, {βi}, {vi}, {σi})
and Vrfypk(id,vi, σi) = 1 for all i. Then

ê(g, σ) = ê

(

g,
ℓ∏

i=1

σβi

i

)

=
ℓ∏

i=1

ê(g, σi)
βi

=

ℓ∏

i=1

ê



y,

m+n∏

j=1

H(id‖j)vij





βi

,

where vij denotes the jth component of vector vi. Continuing, we have

ê(g, σ) =

ℓ∏

i=1

ê



y,

m+n∏

j=1

H(id‖j)vij





βi

=
ℓ∏

i=1

ê



y,
m+n∏

j=1

H(id‖j)βi·vij





=
m+n∏

j=1

ê

(

y,
ℓ∏

i=1

H(id‖j)βi·vij

)

=

m+n∏

j=1

ê
(

y, H(id‖j)
Pℓ

i=1
βi·vij

)

=

m+n∏

j=1

ê
(

y, H(id‖j)v
∗
j

)

,

where (v∗1 , . . . , v
∗
m+n) = v∗ def

=
∑ℓ

i=1
βivi. This proves correctness of the scheme.

4.1 Proof of Security

We now prove security of the scheme introduced in the previous section.

Theorem 1 If IG satisfies the computational Diffie-Hellman assumption, then the scheme of the
previous section is a secure signature scheme for linear subspaces.
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Proof Let F be an adversary attacking the scheme in the sense of Definition 2, and let εF (k)
denote the success probability of this adversary. We define an algorithm A that will solve the
computational Diffie-Hellman problem with probability related to the success probability of F .
Algorithm A is given G1, G2, ê, g, y, h, where G1 and G2 have prime order p and y = gα for some
α ∈ Fp unknown to A. Algorithm A then simulates an instance of the signature scheme for F . It
sets the public key pk = (G1, G2, ê, g, y) and then runs F(pk). It answers the oracle queries of F
as follows:

Random oracle queries. If the value of H(id‖i) has already been defined at some point earlier
in the experiment, then A simply returns that value. Otherwise, A chooses random z,w ← Fp and
returns gz · hw ∈ G1.

Signing queries. If F requests a signature on the vector subspace V , given by a basis v1, . . . ,vt,
then A proceeds as follows:

1. Choose random id ← {0, 1}k . If the same value id was used to answer a previous signing
query, then abort.

2. Choose w ← V ⊥; that is, let w be a random vector that is orthogonal to V . (If V = F
m+n
p

then w is the 0-vector.) Let w = (w1, . . . , wm+n).

3. Also choose z = (z1, . . . , zm+n)← F
m+n
p .

4. For i = 1, . . . ,m + n, set H(id‖i) = gzi · hwi . If the value of H on any of these points has
already been defined at some point earlier in the experiment, then abort.

5. For i = 1, . . . , t, set σi = y〈vi,z〉, where 〈·, ·〉 denotes the standard inner product over Fp (i.e.,
〈vi, z〉 =

∑m+n
j=1

vij · zj mod p). Return σ1, . . . , σt to F .

As in Definition 2, let (id1, V1), . . . , (idℓ, Vℓ) denote the sequence of identifiers and subspaces defined
by the signing queries of F .

At some point, F outputs (id∗,v∗, σ∗). Assume without loss of generality that, before outputting
such a tuple, F queries H(id∗‖i) for i = 1, . . . ,m+n. Because of the way hash queries are simulated
(whether in response to a hash query or in the course of answering a signing query), for all i it

holds that H(id∗‖i) = gz∗i hw∗
i for some values z∗i , w∗

i known to A. Let z∗
def
= (z∗1 , . . . , z∗m+n) and

w∗ def
= (w∗

1 , . . . , w
∗
m+n), and set

Z
def
= 〈z∗,v∗〉, W

def
= 〈w∗,v∗〉. (1)

If W = 0 then A outputs fail. Otherwise, A outputs
(
σ∗/yZ

)1/W
.

We claim that A outputs the correct solution to its given input instance with probability that
is negligibly close to εF (k). To see this, first observe that A aborts (when answering signing
queries) with only negligible probability since id is chosen uniformly at random from {0, 1}k when
answering each such query. Assuming A does not abort, the responses to all random oracle queries
are uniformly and independently distributed as required. The signatures returned by A also have
the correct form since, if H(id‖i) = gzi · hwi for i = 1, . . . ,m + n, then, for any vj = (vj1, . . .), a
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valid signature on vj would be computed as

(
m+n∏

i=1

H(id‖i)vji

)α

=

(
m+n∏

i=1

(gzi · hwi)vji

)α

=
(

g
Pm+n

i=1
vji·zi · h

Pm+n
i=1

vji·wi

)α
.

If vj and w are orthogonal, as they are by construction when A answers signing queries, then it
holds that

∑m+n
i=1

vji · wi = 0 and so
(

g
Pm+n

i=1
vji·zi · h

Pm+n
i=1

vji·wi

)α
=

(

g〈vj , z〉
)α

= y〈vj , z〉 ,

exactly as returned by A. We conclude that F , when run by A as above, succeeds with probability
negligible close to ε(k).

We next claim that, conditioned on the fact that F succeeds, A outputs a correct answer with
all but negligible probability. First observe that when F succeeds and W 6= 0 (where W is as in
Equation (1)), then A outputs the correct answer. To see this, let H(id∗‖i) = gz∗i hw∗

i as above, and
note that when F succeeds then

ê(g, σ∗) = ê

(

y,

m+n∏

i=1

(

gz∗i hw∗
i

)v∗i

)

and so

σ∗ =

(
m+n∏

i=1

(

gz∗i hw∗
i

)v∗i

)α

=
(

g〈z
∗,v∗〉 · h〈w∗, v∗〉

)α
= yZ · (hα)W .

Thus, hα = (σ∗/yZ)1/W as computed by A.
It remains to show that W = 0 with only negligible probability. We separately consider the two

cases in which F succeeds.

Case 1: id∗ 6∈ {id1, . . . , idℓ} and v∗ 6= ~0. Observe that, for each i, we have H(id∗‖i) = gz∗i ·hw∗
i for

values z∗i , w∗
i known to A. From the viewpoint of F , the vector w∗ = (w∗

1, . . . , w
∗
m+n) is uniformly

distributed in F
m+n
p . So the probability that W

def
= 〈w∗,v∗〉 = 0 is 1/p, which is negligible.

Case 2: id∗ = idi but v∗ 6∈ Vi. (Note that, by construction of A, the {idi} are distinct or else A
aborts. Furthermore, if F succeeds then it must be the case that Vi 6= F

m+n
p .) As above, for each

value of i let H(id∗‖i) = gz∗i · hw∗
i for some values z∗i , w∗

i known to A. From the viewpoint of F, the
vector w∗ = (w∗

1, . . . , w
∗
m+n) is uniformly distributed in V ⊥

i . Since v∗ 6∈ Vi, the probability that

W
def
= 〈w∗,v∗〉 = 0 is again 1/p, which is negligible. This concludes the proof.

4.2 Efficiency Improvements

Using standard techniques, batching can be used to speed up verification when the fraction of
corrupted packets is expected to be low. We omit the details.
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5 Conclusion

We show in this paper a homomorphic signature scheme in which signatures on a set of vectors
{vi} can be used to generate a valid signature on any vector v ∈ span({vi}). This signature
scheme can be naturally used in conjunction with network coding to ensure protection against
malicious modification of data in transit, in the presence of an arbitrary number of corrupted
nodes. In contrast to previous suggestions offering such protection [7, 24], our construction adds
only a (small) constant overhead to the communication complexity and is therefore suitable for
environments where network coding is used.
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