
Limits of Computational Differential Privacy
in the Client/Server Setting

Adam Groce, Jonathan Katz, and Arkady Yerukhimovich

Dept. of Computer Science
University of Maryland

{agroce, jkatz, arkady}@cs.umd.edu

Abstract. Differential privacy is a well established definition guaran-
teeing that queries to a database do not reveal “too much” information
about specific individuals who have contributed to the database. The
standard definition of differential privacy is information theoretic in na-
ture, but it is natural to consider computational relaxations and to ex-
plore what can be achieved with respect to such notions. Mironov et al.
(Crypto 2009) and McGregor et al. (FOCS 2010) recently introduced and
studied several variants of computational differential privacy, and show
that in the two-party setting (where data is split between two parties)
these relaxations can offer significant advantages.

Left open by prior work was the extent, if any, to which computational
differential privacy can help in the usual client/server setting where the
entire database resides at the server, and the client poses queries on
this data. We show, for queries with output in Rn (for constant n) and
with respect to a large class of utilities, that any computationally private
mechanism can be converted to a statistically private mechanism that is
equally efficient and achieves roughly the same utility.

1 Introduction

A statistical database holds data representing some population. It is often desir-
able to allow clients to query this database to learn properties of the underlying
population. However, it is also important to protect the privacy of the individ-
ual users whose data is contained in the database. This conflict between utility
and privacy has motivated a significant amount of research in recent years, and
several definitions of privacy as well as techniques for achieving these definitions
have appeared in the literature.

The foundational definition of privacy in this setting is that of differential pri-
vacy [6, 5, 3]. Very coarsely, this definition can be viewed as limiting the amount
of information the answer to some query reveals about any particular user in
the database. The standard definition of differential privacy is very strong, re-
quiring unconditional privacy guarantees against computationally unbounded
adversaries. Despite this fact, there has been a good amount of success in de-
signing differentially private mechanisms for many types of queries and in various
settings [1, 5, 12, 2, 9].

Recently, Mironov et al. [11] introduced various notions of computational dif-
ferential privacy and explored relations between them. There are several reasons
to consider such relaxations of differential privacy. In practice a computational
notion of security suffices, yet the stringent notion of (statistical) differential
privacy rules out some mechanisms that are intuitively secure: e.g., a differ-
entially private mechanism implemented using pseudorandom noise in place of
truly random noise, or a differentially private mechanism implemented using
secure multi-party computation [4, 11]. One might hope that by considering a
relaxed definition we can circumvent limitations or impossibility results that
arise in the information-theoretic setting, in the same way that computationally
secure notions of encryption allow bypassing known bounds for perfectly secure
encryption. Recent results [11, 10] show that this is the case in the two-party set-
ting where the database is partitioned between two parties who wish to evaluate
some query over their joint data. Specifically, McGregor et al. [10] show a strong
separation between the accuracy that can be obtained when using differential
privacy as opposed to using computational differential privacy.

McGregor et al. [10], however, leave open the analogous question in the more
widely studied client/server setting where a server holds the entire database on
which a client may pose queries. Indeed, they explicitly remark [10, Section 1]:

[Our] strong separation between (information-theoretic) differential pri-
vacy and computational differential privacy . . . stands in sharp contrast
with the client-server setting where. . . there are not even candidates for
a separation.

It is this question we address in this paper.

1.1 Summary of Our Results

There are (at least) two notions of computational privacy that can be considered:
IND-CDP and SIM-CDP. These notions are introduced in [11], where it is shown
that any SIM-CDP mechanism is also IND-CDP (the other direction is not
known); thus, SIM-CDP is a possibly stronger definition. (Mironov et al. also
define the notion of SIM∀∃-CDPbut this notion is equivalent to IND-CDP.) We
review these definitions in Section 2.

There are two measures one could hope to improve upon when moving from
the setting of (statistical) differential privacy to the setting of computational
differential privacy: the best possible utility (or accuracy) that can be achieved,
and the efficiency of implementing a mechanism that achieves some level of util-
ity. With respect to the definitions given by Mironov et al., it is not hard to see
that the best achievable utility cannot be improved as long as the utility is an ef-
ficiently computable function of the database and the output of the mechanism.
(This is an immediate consequence of the SIM-CDP and SIM∀∃-CDP defini-
tions, since otherwise the utility function itself serves as a distinguisher.) The
interesting question is therefore to look for improvements in the efficiency, e.g.,
to show that the best possible utility for polynomial-time mechanisms is better

in the computational case, or even to show a polynomial factor improvement
in the efficiency in moving from one case to the other. Unfortunately, we show
two negative results indicating that such improvements are unlikely in certain
natural settings:

1. Our first result concerns black-box constructions of computationally secure
mechanisms from a wide range of cryptographic primitives including trap-
door permutations, collision-resistant hash functions, and/or random oracles.
Roughly, we show that for any black-box construction of a computationally
private mechanism there exists a corresponding statistically private mecha-
nism that performs just as well in terms of both efficiency and utility (with
respect to any utility measure).

2. Our main results rules out improvements by arbitrary mechanisms, for a
specific (but large) class of queries and utility measures. That is, for queries
with output in Rn (for constant n) and a natural class of utilities, we show
that any computationally private mechanism can be converted to a statisti-
cally private mechanism that is roughly as efficient and achieves almost the
same utility.

Each result applies to both the IND-CDP and SIM-CDP definitions.
We believe our results represent an important step in understanding the

benefits and limitations of computational notions of privacy. Although we show
negative results, they may point toward specific situations where computational
differential privacy gives some advantage. We leave it as an open question to find
utility measures or query classes with respect to which computational differential
privacy can help in the client/server setting, or to extend our impossibility results
to show that no such improvements can be hoped for.

Limitations of our results. There are several types of queries to which our
results do not apply. The most important are queries with outputs that cannot
naturally be thought of as tuples of real numbers. This includes, e.g., queries
that return classifiers (as in [9]), graphs, or synthetic databases.

Our results also do not apply, in general, to queries that return output in Rn
for “large” n (i.e., n that grows with the security parameter k). In particular,
this means that our results are somewhat limited when it comes to analyzing
differential privacy of multiple queries. (Note that n queries with outputs in R
can be viewed as a single query with output in Rn.) Our results do apply to any
constant number of queries. In addition, using composition properties of differ-
ential privacy, our results apply to the case where arbitrarily many queries are
answered, and all queries are answered independently (i.e., the server maintains
no state). However, in some cases it is known that answering many queries at the
same time can be done with better privacy than would be achieved by answering
each query independently; in such cases our results do not apply.

Our results also hold only for restricted classes of utility functions. For ex-
ample, they do not apply when there is no polynomial bound on the error.

2 (Computational) Differential Privacy

We begin by reviewing definitions for the various notions of differential privacy
that will be discussed in this paper. All have roughly the same underlying intu-
ition, but the technical differences are crucial. We begin by defining “adjacent”
databases.

Definition 1 Two databases D,D′ ∈ D are adjacent if they differ in at most 1
entry.

Differential privacy guarantees that the results of queries on two adjacent
databases cannot be distinguished very well. This is a very strong privacy guar-
antee, that in particular ensures that the presence or absence of any one user in
the database cannot affect the results very much.

One way to formalize this notion is to require that no set of answers can be
significantly more likely to result from D than from D′. Formalizing this yields
the by-now-standard notion of (statistical) differential privacy:

Definition 2 A randomized function f : D → R is ε-differentially private (ε-DP)
if for all adjacent databases D,D′ ∈ D and all subsets S ⊂ R:

Pr[f(D) ∈ S] ≤ eε × Pr[f(D′) ∈ S].

This is the strongest definition of differential privacy. It can, in fact, be
criticized as too strong. For example, consider a set of responses that are possible
outputs when querying D but impossible when querying D′. The existence of
such responses violates differential privacy, even if the probability of outputting
one of these responses is small. To allow for this sort of situation one can consider
a slightly weaker notion of differential privacy, called (ε, δ)-differential privacy,
that allows a small additive factor in the inequality [4].

Definition 3 A randomized function f : D → R is (ε, δ)-differentially private
((ε, δ)-DP) if for all adjacent databases D,D′ ∈ D and all subsets S ⊂ R:

Pr[f(D) ∈ S] ≤ eε × Pr[f(D′) ∈ S] + δ.

It is worth noting that while for ε-DP it is sufficient to require the inequality in
the definition to hold pointwise, for (ε, δ)-differential privacy it is important to
explicitly consider all subsets S.

We say a family of mechanisms {fk} is efficient if the running time of fk(D) is
at most poly(|D|, k). A family {fk} is uniform if there is a Turing machine f such
that f(k,D) = fk(D). It is reasonable even in the information-theoretic setting
to consider a family of mechanisms {fk} indexed by a security parameter k, and
to require that δ become negligible in k.

Definition 4 Let ε be an arbitrary function. A family of randomized functions
{fk}k∈N is (ε, negl)-DP if there exists a negligible function δ such that each fk
is (ε(k), δ(k))-DP.

The above definitions are all information-theoretic in nature, but it is natural
to consider computational variants. Mironov et al. [11] propose two definitions
of computational differential privacy, SIM-CDP and IND-CDP. Roughly, one
can view IND-CDP as an “indistinguishability-based” relaxation whereas SIM-
CDP is a “simulation-based” notion. SIM-CDP is at least as strong as IND-
CDP [11], but the converse is not known. All the definitions can be presented
for either uniform or non-uniform adversaries; for consistency with [11], we give
non-uniform definitions here. While we state our results for the case of non-
uniform adversaries, our results all carry over to the uniform setting as well.

IND-CDP provides perhaps the most natural relaxation of differential pri-
vacy.

Definition 5 (IND-CDP) Let ε be an arbitrary function. A family of func-
tions {fk}k∈N is ε-IND-CDP if for every non-uniform polynomial-time A and
every sequence {(Dk, D

′
k)}k∈N of (ordered pairs of) polynomial-size, adjacent

databases, there is a negligible function negl such that

Pr[A(fk(Dk)) = 1] ≤ eε(k) × Pr[A(fk(D′k)) = 1] + negl(k).

The notion of SIM-CDP requires that there be a statistically private mech-
anism that is indistinguishable from the mechanism under consideration.

Definition 6 (SIM-CDP) Let ε be an arbitrary function. A family of func-
tions {fk}k∈N is ε-SIM-CDP if there exists a family of functions {Fk}k∈N that
is (ε, negl)-DP and is computationally indistinguishable from {fk}. The latter
means there is a negligible function negl such that for any non-uniform polynomial-
time A and any database D:∣∣∣Pr[A(fk(D)) = 1]− Pr[A(Fk(D)) = 1]

∣∣∣ ≤ negl(k).

In [11] it is required that {Fk}k∈N be ε-DP (rather than (ε, negl)-DP). Thus
our definition is slightly weaker, which makes our impossibility results stronger.

We also recall the notion of SIM∀∃-CDP, which weakens SIM-CDP by revers-
ing the order of quantifiers in the definition: here, the statistically private mech-
anism F is allowed to be different for each pair of databases (D,D′). Crucially
for our purposes, this definition is known to be equivalent to IND-CDP [11].

Definition 7 (SIM∀∃-CDP) Let ε be an arbitrary function. A family of func-
tions {fk}k∈N is ε-SIM∀∃-CDP if for all sequences of (unordered pairs of) adja-
cent databases {{Dk, D

′
k}}k∈N there is a family of functions {Fk}k∈N such that:

1. {Fk} is ε-DP on {{Dk, D
′
k}}k∈N; i.e., for all subsets S ⊂ R we have

Pr[Fk(Dk) ∈ S] ≤ eε(k) × Pr[Fk(D′k) ∈ S].

2. fk(Dk) and fk(D′k) are indistinguishable from Fk(Dk) and Fk(D′k) respec-
tively. Formally, for any non-uniform, polynomial-time adversary A∣∣∣Pr[A(fk(Dk)) = 1]− Pr[A(Fk(Dk)) = 1]

∣∣∣ ≤ negl(k),

and similarly for D′k.

Thus far we have only discussed privacy but have not mentioned utility. In
general, we assume a utility measure U that takes as input a database D and
the output of some mechanism f(D) and returns a real number. In Section 4 we
consider a specific class of utilities.

3 Limitations on Black-Box Constructions

Here we show that black-box constructions (of a very general sort) cannot help in
the setting of computational differential privacy. (We refer the reader to [13] for
further discussion and definitional treatment of black-box constructions.) For
concreteness, in the technical discussion we focus on black-box constructions
from one-way functions, but at the end of the section we discuss generalizations
of the result.

Roughly, a fully black-box construction of an ε-IND-CDP mechanism from a
one-way function is a family of polynomial-time oracle machines {f (·)

k }k∈N such
that for every A and every O that is one-way against A it holds that {fOk }k∈N
is ε-IND-CDP against A. It would make sense also to impose a utility condition
on the construction (which could be viewed as a correctness requirement on the
constructions), but we do not do so here.

Theorem 1 If there exists a fully black-box construction {fk}k∈N of an ε-IND-
CDP mechanism from one-way functions, then there exists an (ε, negl)-DP family
{f ′k}k∈N that is roughly as efficient and such that, for all databases D and utility
measures U , ∣∣∣E [U(D, fOk (D))

]
−E

[
U(D, f ′k(D))

]∣∣∣ ≤ negl(k),

where the expectations are both taken over the randomness of the mechanism,
and the expectation on the left is additionally taken over random choice of a
function O.

Proof. The key idea behind the proof is as follows: a random function is one-way
with overwhelming probability [8, 7]; thus, the mechanism fOk with O chosen at
random is also ε-IND-CDP. Since the construction is fully black-box (and hence
relativizing), one-wayness ofO (and hence indistinguishability of the mechanism)
holds even for an unbounded adversary as long as the adversary makes only
polynomially many queries to O. We construct f ′k by having it simply run fk
as a subroutine, simulating a random function O on behalf of fk. This idea is
motivated by analogous techniques used in [7].

Let Func denote the set of length-preserving functions from {0, 1}∗ to {0, 1}∗,
and let f ′k be as just described. Then for any adjacent databases D,D′ and any
(unbounded) A:

Pr[A(f ′k(D)) = 1] = PrO←Func[A(fOk (D)) = 1]

and
Pr[A(f ′k(D′)) = 1] = PrO←Func[A(fOk (D′)) = 1].

Letting OWF denote the event that O is one-way, we have

Pr[A(f ′k(D)) = 1] ≤ Pr
[
A(fOk (D)) = 1 | OWF

]
+ negl(k)

≤ eε(k) × Pr
[
A(fOk (D′)) = 1 | OWF

]
+ negl′(k)

≤ eε(k) × Pr[A(f ′k(D′)) = 1] + negl′′(k).

The second inequality holds since {fk} is a fully black-box construction of an ε-
IND-CDP mechanism from one-way functions. (Note that, above, A is not given
access to O at all.) But the condition that

Pr[A(f ′k(D)) = 1] ≤ eε(k) × Pr[A(f ′k(D′)) = 1] + negl′′(k)

for an unbounded A is equivalent to (ε, negl)-differential privacy.
The claim regarding the utility of {f ′k} follows by a similar argument. (Note

that we do not require that U be efficiently computable.)

Note that the above proof holds not just for constructions based on one-way
functions, but for any black-box construction from a primitive P that can be
instantiated with a random object. This includes, e.g., ideal ciphers, collision-
resistant hash functions, and trapdoor permutations [7].

4 Limitations for Computational Differential Privacy

In the previous section we ruled out black-box constructions from general as-
sumptions, but with regard to arbitrary measures of utility and arbitrary mech-
anisms. Here, we focus on arbitrary mechanisms with output in Rn (for con-
stant n), and a large, but specific, class of efficiently computable utilities. Specif-
ically, we look at utilities defined by (a generalization of) the Lp norm.

Definition 8 (Lp-norm) The Lp-norm of a vector x ∈ Rn, denoted ||x||p, is
defined as

||x||p
def= (|x1|p + |x2|p + . . .+ |xn|p)1/p

for p ∈ N+, where xi is the ith coordinate of x. (We do not deal with the L0

norm in this paper.) We also allow p =∞, where

||x||∞
def= max(|x1|, |x2|, . . . , |xn|).

A natural notion of utility would be to look at the average distance (in some
Lp norm) from the true answer to the output of the mechanism. We broaden this
to include things like mean-squared error that are commonly used in statistics.

Definition 9 (Average (p, v)-error) Let fk : D → Rn be a mechanism for
answering a query q : D → Rn. The average (p, v)-error (also called the vth
moment of the Lp error) of this mechanism (p > 0, v ≥ 1) on database D is

σp,v(q,D, fk) def= E
[
||fk(D)− q(D)||vp

]
.

We often refer to the above as “error” rather than “utility”; lower error values
are good, whereas lower utility values are bad. We remark that we can handle
utility measures beyond the above, as long as they satisfy a technical requirement
that follows from our proof. Since we do not currently have any clean way to
state this requirement, we do not discuss it further

Given a mechanism {fk : D → Rn}k∈N for answering a query q : D → Rn,
we say the average (p, v)-error of {fk} is polynomially bounded if there is a
polynomial err such that, for all D and k, we have

σp,v(q,D, fk) ≤ err(k).

Theorem 2, below, shows that nothing can be gained by using computa-
tional differential privacy rather than statistical differential privacy, as long as
we consider mechanisms whose error is polynomially bounded. Before giving the
formal theorem statement and proof in the following section, we give an intuitive
explanation here.

Let fk be a polynomial-time ε-SIM-CDP mechanism for answering some
query q : D → Rn, where we assume that fk also has output in Rn (and n
is independent of k). Let p > 0, v ≥ 1 be arbitrary, and assume the average
(p, v)-error of fk is polynomially bounded with error bound err. We claim there
is an (ε, negl)-DP mechanism f̂k with essentially the same running time1 as fk,
and such that σp,v(q,D, f̂k) < err(k) + negl(k).

Let {Fk} be a mechanism that is (ε, negl)-DP and indistinguishable from {fk}.
Such a mechanism is guaranteed to exist by definition of SIM-CDP. Note that
{Fk} may be much less efficient than {fk}, and may not even be implementable
in polynomial time. On the other hand, Fk and fk must induce distributions
over Rn that are, in some sense, very close. Intuitively, in any “box” in Rn of
noticeable size, the probabilities with which the outputs of Fk or fk lie in that
cell must be roughly equal; if not, the difference in probabilities could be used
to distinguish Fk and fk (since membership in the box can be efficiently tested).

We derive f̂k by adding a small amount of uniform noise to the output of fk.
Carefully setting the amount of noise to be sufficiently small, we can bound the
error introduced in moving from fk to f̂k. To analyze privacy of the resulting
mechanism, we look at the mechanism F̂k where a small amount of uniform
noise is added to Fk. For any particular value x, the probability with which
f̂k (resp., F̂k) outputs x is proportional to the probability that fk (resp., Fk)
outputs a value within a box centered at x. This box is sufficiently big so that
F̂k and f̂k have similar probabilities of outputting any particular value.

While F̂k and f̂k have similar probabilities of outputting any particular value,
these small differences could, in principle, compound and become unacceptably
large when summed over all values in some set S ⊂ Rn. To show that such
differences do not grow too large, we use the fact that fk has polynomially
bounded error. This allows us to break our analysis into two parts: one focusing
on a region Sc “close” to the correct answer q(D), and the other focusing on

1 Specifically, f̂k runs fk and adds a random number to its output.

Sf = S \ Sc. We show that∣∣∣Pr[f̂k(D) ∈ Sc]− Pr[F̂k(D) ∈ Sc]
∣∣∣

is small, using the argument discussed above; we also show that

max{Pr[f̂k(D) ∈ Sf],Pr[F̂k(D) ∈ Sf]}

is small by the polynomial bound on the error. Combined, this shows that for
every S, the difference ∣∣∣Pr[f̂k(D) ∈ S]− Pr[F̂k(D) ∈ S]

∣∣∣
is small, as required. Since Fk, and hence F̂k, is statistically differentially private,
this means that f̂k is also.

Formal details are given in the following section.

4.1 Statement and Proof of the Main Result

We first present a proof that applies to the (stronger) SIM-CDP definition. We
then outline the changes needed to prove the result for the case of IND-CDP.

Theorem 2 Fix p > 0, v ≥ 1. Let {fk : D → Rn} be an efficient ε-SIM-CDP
mechanism whose average (p, v)-error is polynomially bounded by err. Then there
is an efficient (ε, negl)-DP mechanism {f̂k} with σp,v(q,D, f̂k) < err(k)+negl(k).

Moreover, f̂k has essentially the same running time as fk; specifically, f̂k
only adds uniform noise to fk.

Proof. Let {Fk} be an (ε, negl)-DP family of mechanisms that is indistinguish-
able from {fk}. Let negl1 be a negligible function such that for any non-uniform
polynomial-time A and any database D,∣∣∣Pr[A(fk(D)) = 1]− Pr[A(Fk(D)) = 1]

∣∣∣ ≤ negl1(k).

(Such a function exists by definition of SIM-CDP.)
Since {fk} is efficient, its output must have some polynomial length. We

assume that fk (and hence Fk) give output in fixed-point notation with k bits
of precision. Formally, let Rk be the set

Rk = {x ∈ R | ∃j ∈ Z : x = j · 2−k};

then we assume that fk gives output in Rnk . (More generally, the proof given here
works when the precision is any polynomial in k. Moreover, fixed-point notation
is not essential; in particular, the proof can be modified for the case when the
output of fk is given in floating-point notation.) For x ∈ R and k ∈ N, define
dxek

def= dx · 2ke · 2−k to be the value x “rounded up” so that it lies in Rk.
A set B ⊂ Rn is a box if it a Cartesian product of closed intervals in R.

Abusing notation, we call a sequence {Bk} of boxes Bk ⊂ Rnk a box as well. The
following is an immediate consequence of the SIM-CDP definition (recall the
definition requires indistinguishability against non-uniform adversaries):

Lemma 1 For any box {Bk} and any database D:

|Pr[fk(D) ∈ Bk]− Pr[Fk(D) ∈ Bk]| ≤ negl1(k).

We next define two mechanisms {F̂k} and {f̂k} that are “noisy” versions
of F (D) and f(D), respectively. Because we are dealing with discrete rather
than continuous values, the definition is more complicated than simply adding
uniform noise in some range.

Set c(k) =
⌈

4n
√

negl1(k)
⌉
k

For x ∈ Rnk , let Bc,k(x) denote the box with radius

c(k) (in the L∞ norm) centered at x; that is,

Bc,k(x) = {y ∈ Rnk : ||y − x||∞ ≤ c(k)} .

Mechanism {f̂k} is defined as follows: f̂k(D) computes fk(D), and then outputs a
uniform value in Bc,k(f(D)). (This is equivalent to adding uniform, independent,
discretized noise from [−c(k), c(k)] to each coordinate of f(D).) Mechanism {F̂k}
is defined to be the analogous mechanism that adds noise to F instead of f .

Bc,k(x) contains
(
c(k) · 2k+1 + 1

)n points and thus, for any D and x ∈ Rnk :

Pr[F̂k(D) = x] =
(
c(k) · 2k+1 + 1

)−n · Pr[Fk(D) ∈ Bc,k(x)]

and

Pr[f̂k(D) = x] =
(
c(k) · 2k+1 + 1

)−n · Pr[fk(D) ∈ Bc,k(x)].

Taking Bk = Bc,k(xk) (for an arbitrary sequence {xk} with xk ∈ Rnk) in Lemma 1,
we obtain:∣∣∣Pr[F̂k(D) = xk]− Pr[f̂k(D) = xk]

∣∣∣
=
(
c(k) · 2k+1 + 1

)−n · ∣∣∣Pr[Fk(D) ∈ Bc,k(xk)]− Pr[fk(D) ∈ Bc,k(xk)]
∣∣∣

≤
(
c(k) · 2k+1 + 1

)−n · negl1(k). (1)

The above holds for an arbitrary database D, and so it also holds for any adjacent
database D′.

F̂k applies post-processing to the output of Fk, so {F̂k} is also (ε, negl)-DP.
Let negl2 be a negligible function such that for all sets S and adjacent databases
D and D′ it holds that

Pr[F̂k(D) ∈ S] ≤ eε(k) × Pr[F̂k(D′) ∈ S] + negl2(k). (2)

Our goal is to prove that f̂k(D) is statistically close to F̂k(D), for any D, which
will then imply the theorem. We have already shown (cf. Equation (1)) that the
distributions of f̂k(D) and F̂k(D) are pointwise negligibly close. We need to show
that this is true also for arbitrary subsets. To do this, we first use the polynomial
error bound on fk to argue that fk (and hence f̂k) must put relatively low weight
on outputs that are far from the correct output. Formally:

Lemma 2 There is a polynomial b such that, for any D, we have

σp,v(q,D, f̂k) ≤ err(k) + c(k) · b(k).

The lemma follows from the observation that, for any fixed output y = fk(D),
the output ŷ = f̂k(D) satisfies

||ŷ − q(D)||p ≤ ||y − q(D)||p + n · c(k).

The proof of the lemma is tedious, and so we defer it to Appendix A.
Fix an arbitrary D. We now show that with high probability the output of

f̂k(D) is close to the true answer q(D). Set z(k) =
⌈

1
4n
√

negl1(k)

⌉
k

, and define

Closek
def= {x ∈ Rdk : ||x− q(D)||vp ≤ z(k)};

i.e., these are the points close to q(D). Let Fark
def= Rnk \ Closek. Because the

average error of f̂k is at most err(k) + b(k) · c(k), we have

Pr[f̂k(D) ∈ Fark] ≤
(
err(k) + b(k) · c(k)

)
/z(k). (3)

Indistinguishability of {fk} and {Fk}, and the manner in which {f̂k} and {F̂k}
are constructed, implies that {f̂k} and {F̂k} are indistinguishable as well. As in
the proof of Lemma 1, this means that∣∣∣Pr[f̂k(D) ∈ Fark]− Pr[F̂k(D) ∈ Fark]

∣∣∣ ≤ negl1(k).

Combining this with Equation (3) yields

Pr[F̂k(D) ∈ Fark] ≤
(
err(k) + b(k) · c(k)

)
/z(k) + negl1(k).

We now use the above results to relate the probabilities that F̂k(D) or f̂k(D)
lie within some arbitrary set. The number of points in Closek is bounded from
above by (z(k) · 2k+1 + 1)n, since its size is largest (for fixed z(k)) when p =∞
and v = 1. For any Sk ⊂ Rnk , we can thus lower-bound Pr[F̂k(D) ∈ Sk] via

Pr[F̂k(D) ∈ Sk] =
∑
x∈Sk

Pr[F̂k(D) = x]

≥
∑

x∈Sk∩Closek

Pr[F̂k(D) = x]

≥
∑

x∈Sk∩Closek

(
Pr[f̂k(D) = x]−

(
c(k) · 2k+1 + 1

)−n · negl1(k)
)
,

using Equation (1), which bounds the difference in probabilities between f̂k and
F̂k pointwise. Continuing, we have

Pr[F̂k(D) ∈ Sk]

≥ Pr[f̂k(D) ∈ Sk ∩ Closek]−
(
z(k) · 2k+1 + 1

)n · (c(k) · 2k+1 + 1
)−n · negl1(k)

≥ Pr[f̂k(D) ∈ Sk ∩ Closek]−
(
z(k) + 1
c(k)

)n
· negl1(k)

+
(

Pr[f̂k(D) ∈ Sk ∩ Fark]−
(
err(k) + b(k) · c(k)

)
/z(k)

)
≥ Pr[f̂k(D) ∈ Sk]−

(
z(k) + 1
c(k)

)n
· negl1(k)−

(
err(k) + b(k) · c(k)

)
/z(k). (4)

Similarly, we can upper-bound Pr[F̂k(D) ∈ Sk] via

Pr[F̂k(D) ∈ Sk]

≤
∑

x∈Sk∩Closek

Pr[F̂k(D) = x] + Pr[F̂k(D′) ∈ Fark]

≤
∑

x∈Sk∩Closek

(
Pr[f̂k(D) = x] +

(
c(k) · 2k+1 + 1

)−n · negl1(k)
)

+ Pr[F̂k(D) ∈ Fark]

≤ Pr[f̂k(D) ∈ Sk] +
(
z(k) + 1
c(k)

)n
· negl1(k)

+
(
err(k) + b(k) · c(k)

)
/z(k) + negl1(k). (5)

Equations (4) and (5) hold for an arbitrary database D, and thus also hold
for any adjacent database D′. Substituting into Equation (2) and simplifying,
we obtain

Pr[f̂k(D) ∈ Sk]

≤ eε(k) × Pr[f̂k(D′) ∈ Sk]

+
(
eε(k) + 1

)
×
((

z(k) + 1
c(k)

)n
negl1(k) +

(
err(k) + b(k) · c(k)

)
/z(k)

)
+ eε(k) · negl1(k) + negl2(k) .

We show that the additive terms are all negligible. Note first that

(
z(k) + 1
c(k)

)n
· negl1(k) ≤

 1
4n
√

negl1(k)
+ 2

4n
√

negl1(k)

n

· negl1(k)

≤

(
3

2n
√

negl1(k)

)n
negl1(k)

≤ 3n ·
√

negl1(k),

which is negligible in k (recall n is constant). To bound
(
err(k) + b(k) · c(k)

)
/z(k),

take k large enough so that b(k) · c(k) ≤ err(k) (this is always possible, since c
is negligible while err and b are polynomial). We then have

err(k) + b(k) · c(k)
z(k)

≤ 2 · err(k) · 4n
√

negl1(k),

which is negligible. We conclude that {f̂k} is (ε, negl)-DP.

The case of IND-CDP. A result analogous to the above holds also for the
case of IND-CDP. This follows fairly easily using the equivalent formulation
of IND-CDP in terms of SIM∀∃-CDP. The difference between SIM-CDP and
SIM∀∃-CDP is with respect to the order of quantifiers, but this has no real effect
on our proof. Note, in particular, that our construction of {f̂k} does not depend,
either explicitly or implicitly, on {Fk}.

Acknowledgments

We thank the referees for their detailed comments which allowed us to simplify
parts of our proof. The second author thanks Adam Smith for suggesting the
problem, and for several interesting discussions on the topic of computational
differential privacy.

References

1. A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: The SuLQ
framework. In 24th ACM Symposium on Principles of Database Systems (PODS),
pages 128–138. ACM Press, 2005.

2. A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive
database privacy. In 40th Annual ACM Symposium on Theory of Computing
(STOC), pages 609–618. ACM Press, 2008.

3. C. Dwork. Differential privacy. In 33rd Intl. Colloquium on Automata, Languages,
and Programming (ICALP), Part II, volume 4052 of LNCS, pages 1–12. Springer,
2006.

4. C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data,
ourselves: Privacy via distributed noise generation. In Advances in Cryptology —
Eurocrypt 2006, volume 4004 of LNCS, pages 486–503. Springer, 2006.

5. C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity
in private data analysis. In 3rd Theory of Cryptography Conference — TCC 2006,
volume 3876 of LNCS, pages 265–284. Springer, 2006.

6. C. Dwork and K. Nissim. Privacy-preserving datamining on vertically partitioned
databases. In Advances in Cryptology — Crypto 2004, volume 3152 of LNCS, pages
528–544. Springer, 2004.

7. R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the efficiency of
generic cryptographic constructions. SIAM Journal on Computing, 35(1):217–246,
2005.

8. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In 21st Annual ACM Symposium on Theory of Computing (STOC),
pages 44–61. ACM Press, 1989.

9. S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith.
What can we learn privately? In 49th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 531–540. IEEE, 2008.

10. A. McGregor, I. Mironov, T. Pitassi, O. Reingold, K. Talwar, and S. P. Vadhan.
The limits of two-party differential privacy. In 51st Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 81–90. IEEE, 2010.

11. I. Mironov, O. Pandey, O. Reingold, and S. Vadhan. Computational differential
privacy. In Advances in Cryptology — Crypto 2009, volume 5677 of LNCS, pages
126–142. Springer, 2009.

12. K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in
private data analysis. In 39th Annual ACM Symposium on Theory of Computing
(STOC), pages 75–84. ACM Press, 2007.

13. O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between cryp-
tographic primitives. In 1st Theory of Cryptography Conference — TCC 2004,
volume 2951 of LNCS, pages 1–20. Springer, 2004.

A Proof of Lemma 2

Let Yk be the set of possible distances between two points in Rnk ; i.e.,

Yk
def= {y ∈ R | y = ||x1 − x2||p for some x1,x2 ∈ Rnk}.

Let py,k
def= Pr

[
y − 2−k < ||fk(D)− q(D)||p ≤ y

]
. Then, by the assumption of

our theorem,
σp,v(q,D, fk) ≤

∑
y∈Yk

py,k · yv ≤ err(k).

We can upper-bound σp,v(q,D, f̂k) by assuming that the noise added by f̂k
moves the output further away from the correct answer q(D). In the worst case
(when p = 1), this increases the distance between the output and q(D) by at
most c′(k) def= n · c(k). Therefore,

σp,v(q,D, f̂k) ≤
∑
y∈Yk

py,k · (y + c′(k))v.

Using Taylor’s theorem, (y + c′(k))v ≤ yv + v · (y + c′(k))v−1 · c′(k). Thus, for k
sufficiently large it holds that

σp,v(q,D, f̂k) ≤
∑
y∈Yk

py,k ·
(
yv + v · (y + c′(k))v−1 · c′(k)

)
≤ err(k) +

∑
y∈Yk

py,k ·
(
v · (y + c′(k))v−1 · c′(k)

)
≤ err(k) + v · c′(k) ·

∑
y∈Yk

py,k · (y + n)v−1,

using for the last inequality the fact that c′(k) ≤ n for k large enough.

If y ≤ n then (y+n)v−1 ≤ (2n)v−1, while if y ≥ n then (y+n)v−1 ≤ (2y)v−1.
As a result, we can bound the expression above as

σp,v(q,D, f̂k)

≤ err(k) + v · c′(k) ·
∑
y∈Yk

py,k · 2v−1 · (nv−1 + yv−1)

≤ err(k) + v · c′(k) ·

∑
y∈Yk

py,k · 2v−1nv−1 +
∑
y∈Yk

py,k · 2v−1yv−1

≤ err(k) + v · c′(k) ·

2v−1nv−1 + 2v−1
∑
y∈Yk

py,k · yv−1

 .

Since y > 0, we have yv−1 ≤ yv + 1. Then:

σp,v(q,D, f̂k) ≤ err(k) + v · c′(k) ·

2v−1nv−1 + 2v−1
∑
y∈Yk

py,k · (yv + 1)

≤ err(k) + v · c′(k) ·

(
2v−1nv−1 + 2v−1 · (err(k) + 1)

)
≤ err(k) + c(k) ·

(
2v−1v · nv + 2v−1v · n · (err(k) + 1)

)
.

Since err is polynomial and n, v are constants, this completes the proof.

