
A Forward-Secure Public-Key Encryption Scheme∗

Ran Canetti† Shai Halevi† Jonathan Katz‡

Abstract

Cryptographic computations are often carried out on insecure devices for which the threat of
key exposure represents a serious concern. Forward security allows one to mitigate the damage
caused by exposure of secret keys. In a forward-secure scheme, secret keys are updated at regular
periods of time; exposure of the secret key corresponding to a given time period does not enable
an adversary to “break” the scheme (in the appropriate sense) for any prior time period.

We present the first constructions of (non-interactive) forward-secure public-key encryption
schemes. Our main construction achieves security against chosen-plaintext attacks in the stan-
dard model, and all parameters of the scheme are poly-logarithmic in the total number of time
periods. Some variants and extensions of this scheme are also given.

We also introduce the notion of binary tree encryption and construct a binary tree encryption
scheme in the standard model. Our construction implies the first (hierarchical) identity-based
encryption scheme in the standard model. (The notion of security we achieve, however, is slightly
weaker than that achieved by some previous constructions in the random oracle model.)

1 Introduction

Exposure of secret keys can be a devastating attack on a cryptosystem since such an attack typically
implies that all security guarantees are lost. Indeed, standard notions of security offer no protection
whatsoever once the secret key of the system has been compromised. With the threat of key
exposure becoming more acute as cryptographic computations are performed more frequently on
poorly-protected devices (smart-cards, mobile phones, etc.), new techniques are needed to deal with
this concern.

A variety of methods, including secret sharing [38], threshold cryptography [16], and proactive
cryptography [34], have been introduced in an attempt to deal with this threat. One promising
approach — which we focus on here — is to construct forward-secure cryptosystems. This notion
was first proposed in the context of key-exchange protocols by Günther [25] and Diffie, et al. [17]: a
forward-secure key-exchange protocol guarantees that exposure of long-term secret information does
not compromise the security of previously-generated session keys. A forward-secure key-exchange
protocol naturally gives rise to a forward-secure interactive encryption scheme in which the sender
and receiver interact to generate a shared key which is erased immediately after being used to
encrypt a single message.

Subsequently, Anderson [3] suggested forward security for the more challenging non-interactive
setting: here, the lifetime of the system is divided into N intervals (or time periods) labeled
0, . . . , N −1, and the secret key “evolves” with time. Namely, at the beginning of time period i any

∗A preliminary version of this work appeared in [12].
†IBM T.J. Watson Research Center, NY, USA. {canetti,shaih}@watson.ibm.com.
‡Dept. of Computer Science, University of Maryland. Portions of this work were done while at Columbia University.

Work supported in part by NSF Trusted Computing Grant #0310751. jkatz@cs.umd.edu.

1



party who stores the secret key applies some function to the “previous” key SKi−1 to derive the
“current” key SKi; key SKi−1 is then erased and SKi is used for all secret cryptographic operations
during period i. If we are in a public-key setting, the public key remains fixed throughout the
lifetime of the system; this is crucial for making the scheme viable. Forward security means that
exposure of the secret key SKi (for any time period i) does not compromise the security of the
system — in some appropriate sense — for all time periods prior to i. (Note that since SKi is the
only secret existing at period i, it is impossible to ensure security for period i or any subsequent
time period in this model.) Specializing for the case of encryption, which is the focus of this work,
forward security guarantees that even if an adversary learns SKi (for some i), messages encrypted
during all time periods prior to i remain secret. The notion of forward security was first formalized
by Bellare and Miner [5] in the context of signature schemes; a formal definition for the case of
public-key encryption is introduced here and given in Section 4.

A number of constructions of forward-secure signature/identification schemes are known [5, 30,
1, 27, 31, 29], and forward security in the symmetric-key setting has also been studied [6]. The
existence of non-trivial, forward-secure public-key encryption (PKE) schemes, however, has been
open since the question was first posed by Anderson [3]. Forward-secure PKE has a number of
obvious applications, as it can be used to protect (to the extent possible) the secrecy of communica-
tions for devices operating in insecure environments where key exposure is an immediate concern.
Of course, it is appropriate in “standard” environments as well: if used to send encrypted e-mail,
for example, then the compromise of a user’s secret key on a particular day does not leak any
information about e-mails sent to that user at any time in the past. (Note, however, that if the
user wants to retain the ability to decrypt past e-mails then he will have to store the “master”
secret key SK0 on some secure device.) Finally, forward-secure PKE forms an integral building
block in recent constructions of adaptively-secure encryption schemes [14].

1.1 Our Contributions

In this work we construct the first (non-interactive) forward-secure public-key encryption schemes.
Toward this goal, we introduce the notion of binary tree encryption and show a construction of the
latter as well. Interestingly, this yields the first construction of a hierarchical identity-based encryp-
tion scheme that does not rely on the random oracle model. (The notion of security we achieve,
however, is somewhat weaker than that achieved in prior work.) We explain these contributions in
more detail now.

Forward-secure encryption. We formally define a notion of security for forward-secure public-
key encryption and give efficient constructions of schemes satisfying this notion. Our main scheme
achieves semantic security (i.e., security against chosen-plaintext attacks) in the standard model
based on the decisional version of the bilinear Diffie-Hellman (BDH) assumption [28, 9]. All salient
parameters of this scheme are poly-logarithmic in N , the total number of time periods.

We also present a variant of this scheme with better complexity: in particular, the public-key size
and the key-generation/key-update times are independent of N . Here, semantic security is proven
in the random oracle model1 under the computational BDH assumption. The parameters of our
schemes are summarized in Table 1. Both schemes are roughly as efficient as log2 N invocations of
the Boneh-Franklin identity-based encryption scheme [9] and are therefore practical for reasonable
values of N .

1A proof in the random oracle model does not guarantee the security of a protocol once the random oracle is
instantiated with an efficiently-computable “cryptographic hash function” [11]. Nevertheless, a proof in the random
oracle model can be regarded as heuristic evidence that a construction is secure.

2



Standard model Random oracle model
Key generation time O(log N) O(1)
Encryption/decryption time O(log N · (log log N)2) O(log N)
Key update time O(log N) O(1)
Ciphertext length O(log N) O(log N)
Public key size O(log N) O(1)
Secret key size O(log N) O(log N)

Table 1: Efficiency of our forward-secure encryption schemes as a function of the total number of
time periods N .

At a high level, our constructions share similarities with previous tree-based, forward-secure
signature schemes (e.g., those of [5, 1, 31]). Here, however, we associate time periods with all the
nodes of the tree (in a pre-order traversal) instead of associating time periods with the leaves only;
this improves the efficiency of our key-generation and key-update algorithms. This tree traversal
technique can also be used to improve the efficiency of key generation and the (worst-case) efficiency
of key updates in the tree-based signature schemes mentioned above, from O(log N) to O(1).

We consider also a number of extensions of our schemes. Using the techniques of Malkin, et al.
[31], our schemes can be adapted to support an unbounded number of time periods; in other words,
the number of time periods N need not be known at the time the public key is generated and
published. This has the added advantage that the efficiency depends only on the number of time
periods elapsed thus far. We also sketch two ways to modify our schemes to achieve security against
adaptive chosen-ciphertext attacks [35, 4]. In the random oracle model, we use (an appropriate
modification of) the Fujisaki-Okamoto transformation [20]. In the standard model, we note that
the techniques of Sahai [37] using simulation-sound NIZK proofs (and based on earlier work of Naor
and Yung [33]) extend to our setting; interestingly, we show also that NIZK proofs for all of NP
may be constructed based on the computational BDH assumption (so that we do not require the
additional assumption of trapdoor permutations). This approach serves as a proof of feasibility
only, as it results in a very inefficient scheme. Subsequent to our work, more efficient methods for
achieving chosen-ciphertext security in our setting were shown [13, 10].

Binary-tree encryption and (hierarchical) identity-based encryption. Our constructions
are based on the hierarchical identity-based encryption (HIBE) scheme of Gentry and Silverberg [21]
which, in turn, is based on the identity-based encryption (IBE) scheme of Boneh and Franklin [9].
As a first step toward our constructions, we define a relaxed variant of HIBE which we call binary
tree encryption (BTE). We then show how to modify the Gentry-Silverberg construction to yield
a BTE scheme which can be proven secure in the standard model for trees of polynomial depth.
(In contrast, the main construction of Gentry and Silverberg is proven secure in the random oracle
model, and only for trees of constant depth.) Finally, we construct a forward-secure encryption
scheme from any BTE scheme. Our construction of a forward-secure encryption scheme can be
slightly optimized when given a HIBE scheme (rather than a BTE scheme) as a primitive; as an
example, a more efficient forward-secure encryption scheme can be constructed using a recent HIBE
scheme of Boneh, et al. [8].

The BTE primitive is interesting in its own right. We show in Section 5 how a full-blown
IBE/HIBE scheme (albeit satisfying a slightly weaker notion of security than that considered by
Boneh-Franklin and Gentry-Silverberg) may be based on any BTE scheme. Combined with our
construction of a BTE scheme, this yields the first (hierarchical) identity-based encryption scheme

3



with a proof of security in the standard model.

1.2 Organization

In Section 2 we define the computational and decisional versions of the BDH assumption, and also
review the notion of t-wise independent function families as needed in this work. In Section 3 we
define binary tree encryption and provide a construction of a BTE scheme which is provably secure
under the decisional BDH assumption in the standard model. In that section we also show a more
efficient construction based on the computational BDH assumption in the random oracle model
and discuss some extensions of our schemes.

We formally define forward security for public-key encryption in Section 4, and show there how
a forward-secure PKE scheme can be constructed from any BTE scheme. Combining our results,
we obtain a forward-secure PKE scheme with the parameters advertised in Table 1. In Section 5
we define a (slightly) relaxed notion of security for hierarchical identity-based encryption, and show
how an HIBE scheme satisfying this notion can be constructed from any BTE scheme. Combining
this with our results from Section 3 yields an HIBE scheme secure in the standard model.

2 Preliminaries

We let ppt stand for “probabilistic polynomial time.” If A is a probabilistic algorithm taking inputs
x1, . . . , xn, then by y = A(x1, . . . , xn;ω) we mean that y is assigned the (deterministic) output of A
when run on the stated inputs with random coins ω. By y ← A(x1, . . . , xn) we mean that random
coins ω are chosen uniformly at random, and y is assigned the value A(x1, . . . , xn; ω).

Let ε denote the empty string, having length 0. We let {0, 1}` denote the set of strings of length `,
and define {0, 1}<` def=

⋃
0≤i<`{0, 1}i and {0, 1}≤` def=

⋃
0≤i≤`{0, 1}i. We stress in particular that the

latter both contain the empty string.

2.1 The Bilinear Diffie-Hellman Assumption

The security of our BTE schemes are based on the difficulty of the bilinear Diffie-Hellman (BDH)
problem as formalized by Boneh and Franklin [9] (see also [28]). We review the relevant definitions
of the computational and decisional versions of this assumption as they appear in [9, 21]. Let G1

and G2 be two cyclic groups of prime order q, where G1 is represented additively and G2 is repre-
sented multiplicatively. We assume a non-constant map ê : G1 ×G1 → G2 for which the following
hold:

1. The map ê is bilinear : for all P0, P1 ∈ G1 and all α, β ∈ Zq we have ê(αP0, βP1) = ê(P0, P1)αβ.

2. There is an efficient algorithm to compute ê(P0, P1) for any P0, P1 ∈ G1.

A BDH parameter generator IG is a randomized, polynomial-time algorithm that takes as input
a security parameter 1k and outputs the description of two groups G1,G2 and a map ê satisfying the
above conditions (we assume q, the group order, is implicit in G1,G2). We define the computational
BDH problem with respect to IG as the following: given (G1,G2, ê) output by IG along with
random P, αP, βP, γP ∈ G1, compute ê(P, P )αβγ . We say that IG satisfies the computational BDH
assumption if the following probability is negligible (in k) for all ppt algorithms A:

Pr
[

(G1,G2, ê) ← IG(1k);P ← G1; α, β, γ ← Zq :
A(G1,G2, ê, P, αP, βP, γP ) = ê(P, P )αβγ

]
.

4



The decisional BDH problem is to distinguish between tuples of the form (P, αP, βP, γP, ê(P, P )αβγ)
and (P, αP, βP, γP, ê(P, P )µ) for random P, α, β, γ, µ. (Note that if P is a generator of G1 — which
is the case with all but negligible probability — then ê(P, P ) is a generator of G2 and so ê(P, P )µ

is simply a random element of G2.) Formally, we say IG satisfies the decisional BDH assumption
if the following probability is negligible (in k) for all ppt algorithms A:

∣∣∣∣Pr
[

(G1,G2, ê) ← IG(1k);P ← G1;α, β, γ ← Zq :
A(G1,G2, ê, P, αP, βP, γP, ê(P, P )αβγ) = 1

]

− Pr
[

(G1,G2, ê) ← IG(1k);P ← G1;α, β, γ, µ ← Zq :
A(G1,G2, ê, P, αP, βP, γP, ê(P, P )µ) = 1

]∣∣∣∣ .

BDH parameter generators believed to satisfy the above assumptions can be constructed from
modified Weil or Tate pairings associated with elliptic curves or Abelian varieties. As our results
do not depend on any specific instantiation, we refer the interested reader to [9] for details.

2.2 t-Wise Independent Function Families

We briefly review the notion of t-wise independent function families (specialized for our purposes)
and describe the construction we will use. Let H be a family of functions with domain Zq and
range G1 (where these are as in the previous section; in particular, q is prime). We say H is t-wise
independent if for all distinct x1, . . . , xt ∈ Zq and all y1, . . . , yt ∈ G1 we have

Pr
H←H

[H(x1) = y1 ∧ · · · ∧H(xt) = yt] =
(

1
|G1|

)t

.

In other words, informally speaking, any t distinct elements in Zq are mapped uniformly and
independently to G1 by a randomly-selected hash function fromH. Abusing terminology somewhat,
we will refer to a given function H ∈ H as a t-wise independent function. An additional property
we will require of H is that given any distinct x1, . . . , xj ∈ Zq and any y1, . . . , yj ∈ G1 with j ≤ t,
it is possible to efficiently sample a uniform element from the set

{H ∈ H : H(x1) = y1 ∧ · · · ∧H(xj) = yj} .

We will use the following construction: let H = {Hh0,...,ht}h0,...,ht∈G1 , where Hh0,...,ht(x) def=
h0 + x · h1 + · · ·+ xt · ht. We first claim that H is (t + 1)-wise independent. To see this, let g ∈ G1

be a generator of G1 and let Ĥh0,...,ht denote the polynomial (over the field Zq)

Ĥh0,...,ht(x) = logg h0 + x · logg h1 + · · ·+ xt · logg ht ,

where logg h is the unique element λ ∈ Zq such that λ · g = h (recall that |G1| = q). Now, for any
distinct x1, . . . , xt+1 ∈ Zq and y1, . . . , yt+1 ∈ G1, we have

Hh0,...,ht(xi) = yi for all i iff Ĥh0,...,ht(xi) = logg yi for all i.

It is well known that there is a unique polynomial Ĥ∗(x) = ĥ∗0 + x · ĥ∗1 + · · ·+ xt · ĥ∗t of degree at
most t such that Ĥ∗(xi) = logg yi for all i. So

Pr
H←H

[∀i : H(xi) = yi] = Pr
h0,...,ht←G1

[∀i : Hh0,...,ht(xi) = yi]

= Pr
h0,...,ht←G1

[Ĥh0,...,ht = Ĥ∗]

5



= Pr
h0,...,ht←G1

[∀i : logg hi = ĥ∗i ]

=
(

1
q

)t+1

=
(

1
|G1|

)t+1

,

as required.
As for our second requirement, given distinct x1, . . . , xj ∈ Zq and arbitrary y1, . . . , yj ∈ G1

with j ≤ t + 1, we may sample uniformly from the set {H ∈ H : H(xi) = yi for 1 ≤ i ≤ j} as
follows. Choose arbitrary xj+1, . . . , xt+1 ∈ Zq so that the {xi}t+1

i=1 are distinct. Then choose
yj+1, . . . , yt+1 ∈ G1 uniformly at random. We now find the unique values h0, . . . , ht such that
Hh0,...,ht(xi) = yi for all i. These values must satisfy the following system of equations:




1 x1 x2
1 · · · xt

1

1 x2 x2
2 · · · xt

2
...

...
...

. . .
...

1 xt+1 x2
t+1 · · · xt

t+1




︸ ︷︷ ︸
X

·




h0

h1
...
ht


 =




y1

y2
...

yt+1


 .

Since the {xi} are distinct, the Vandermonde matrix X is invertible. We may thus compute



h0

h1
...
ht


 = X−1 ·




y1

y2
...

yt+1


 ,

as desired. Note in particular that we do not need to compute any discrete logarithms in G1 (which
we do not know how to do efficiently when G1 is generated as in the previous section).

3 Binary Tree Encryption

This section defines the notion of binary tree encryption (BTE) and presents a BTE scheme based
on the bilinear Diffie-Hellman assumption. As discussed in the introduction, BTE is a relaxation
of hierarchical identity-based encryption (HIBE) [26, 21]. As in HIBE, in BTE we have a “master”
public key PK associated with a tree; each node in this tree has a corresponding secret key. To
encrypt a message “targeted” for some node, one uses both PK and the name of the target node;
the resulting ciphertext can then be decrypted using the secret key of the target node. Moreover,
as in HIBE the secret key of any node can be used to derive the secret keys for the children of that
node. The only difference between HIBE and BTE is that in the latter we insist on a binary tree,
where the children of a node w are labeled w0 and w1. (In an HIBE scheme the tree can have
arbitrary degree, and a child of node v is labeled v.s for an arbitrary string s.) A formal definition
follows:

Definition 1 A (public-key) binary tree encryption (BTE) scheme is a tuple of ppt algorithms
(Gen, Der, Enc,Dec) such that:

• The key-generation algorithm Gen takes as input a security parameter 1k and a value 1`

representing the depth of the tree. It returns a master public key PK and a root secret key
SKε. (We assume that 1k and 1` are implicit in PK.)

6



• The key-derivation algorithm Der takes as input PK, the name of a node w ∈ {0, 1}<`, and
its secret key SKw. It returns secret keys SKw0, SKw1 for the two children of w.

• The encryption algorithm Enc takes as input PK, the name of a node w ∈ {0, 1}≤`, and a
message M . It returns a ciphertext C.

• The decryption algorithm Dec takes as input PK, the name of a node w ∈ {0, 1}≤`, its secret
key SKw, and a ciphertext C. It returns a message M or a distinguished symbol ⊥.

We make the natural correctness requirement: namely, for any (PK, SKε) output by Gen(1k, 1`),
any node w ∈ {0, 1}≤` and secret key SKw correctly generated for this node, and any message M ,
we have M = Dec(PK,w, SKw, Enc(PK,w, M)). ♦

Roughly speaking, a secure BTE scheme should ensure the secrecy of ciphertexts targeted for a
node w even if the secret keys of other nodes (as long as they are not ancestors of w) are exposed. In
[21] (in the context of HIBE), the adversary is allowed to choose the target node w adaptively. We
define a relaxed notion of security whereby the adversary is required to commit to the target node
in advance (i.e., before seeing the public key); we call this attack scenario a selective-node (SN)
attack (by analogy with “selective forgery” of signatures [24]). While this definition is a weaker
one, it suffices for our applications. Furthermore, by a standard hybrid argument the definitions
can be shown to be equivalent when the number of nodes in the tree is polynomial in the security
parameter.

Definition 2 A BTE scheme is secure against selective-node, chosen-plaintext attacks (secure in
the sense of SN-CPA) if for all polynomials `(·) and all ppt adversaries A, the advantage of A in
the following game is negligible in the security parameter k (in the following, let ` = `(k)):

1. A(1k, 1`) outputs a name w∗ ∈ {0, 1}≤` of a node.

2. Algorithm Gen(1k, 1`) outputs (PK, SKε). In addition, algorithm Der(· · ·) is run to generate
the secret keys of all the nodes on the path from the root to w∗ (we denote this path by P ).
The adversary is given PK and the secret keys {SKw} for all nodes w of the following form:

– w = w′b, where w′b is a prefix of w∗ and b ∈ {0, 1} (i.e., w is a sibling of some node in P );

– w = w∗0 and w = w∗1, if |w∗| < ` (i.e., w is a child of w∗).

Note that this information allows the adversary to compute SKw′ for any node w′ ∈ {0, 1}≤`

that is not a prefix of w∗.

3. The adversary generates a request challenge(M0,M1). A random bit b is selected and the
adversary is given C∗ = Enc(PK,w∗,Mb).

At the end of the game the adversary outputs b′ ∈ {0, 1}; it succeeds if b′ = b. The adversary’s
advantage is the absolute value of the difference between its success probability and 1/2. ♦
In the above definition (as well as all the definitions of security in this paper) the adversary is
assumed to maintain state throughout its execution.

Security against chosen-ciphertext attacks is defined as the obvious extension of the above:

Definition 3 A BTE scheme is secure against selective-node, chosen-ciphertext attacks (secure in
the sense of SN-CCA) if for all polynomials `(·) and all ppt adversaries A, the advantage of A in
the following game is negligible in the security parameter k (again, set ` = `(k)):

7



1. A(1k, 1`) outputs a name w∗ ∈ {0, 1}≤` of a node.

2. Algorithm Gen(1k, 1`) outputs (PK, SKε). The adversary is given PK and node secret keys
as in Definition 2.

3. The adversary may query a decryption oracle denoted by Dec∗(·, ·). On query Dec∗(w, C)
with w ∈ {0, 1}≤`(k), the key SKw is derived from SKε and the adversary is given M =
Dec(PK, w, SKw, C).

4. The adversary generates a request challenge(M0,M1). A random bit b is selected and the
adversary is given C∗ = Enc(PK,w∗,Mb).

5. The adversary may continue to query Dec∗(·, ·), except that it may not query Dec∗(w∗, C∗)
(but it may query Dec∗(w, C∗) with w 6= w∗ or Dec∗(w∗, C) with C 6= C∗).

At the end of the game the adversary outputs b′ ∈ {0, 1}; it succeeds if b′ = b. The adversary’s
advantage is the absolute value of the difference between its success probability and 1/2. ♦

Remark 1 (Randomized key-derivation algorithms). There is a slight technicality with regard to
the above definition in case the key-derivation algorithm Der is randomized (and so there might be
multiple “valid” keys SKw that can be derived from SKε). Specifically, there are two natural ways
the decryption queries of A can be answered:

First approach: When A queries Dec∗(w,C), key SKw is derived “from scratch” starting from
SKε using repeated calls to Der.

Second approach: At the end of step 2, define a set Keys containing SKε, all secret keys on the
path from the root to w∗, and all secret keys given to A. When A queries Dec∗(w, C), do:

• If SKw ∈ Keys, decrypt C using SKw.

• Otherwise, let w′ be the longest prefix of w such that SKw′ ∈ Keys. Derive SKw using
SKw′ and repeated calls to Der. Decrypt C using SKw, and add all secret keys generated
during this step to Keys.

Note that, under the first approach, the same decryption query of A might be answered differently
depending on the secret key used for decryption each time the query is asked. For the schemes
presented here, the choice of which approach to use is immaterial even though key derivation is
randomized. For concreteness, however, we will implicitly assume the second approach.

3.1 BTE Schemes Based on the BDH Assumption

Our main result of this section is the following:

Theorem 1 Under the decisional BDH assumption, there exists a BTE scheme that is secure in
the sense of SN-CPA.

The starting point for our construction is the HIBE scheme of Gentry and Silverberg [21]. Unlike
their scheme, our scheme will be proven secure in the standard model and for trees of polynomial
depth. (It is immediate that the scheme of [21] may be used to implement a secure BTE in the
random oracle model for trees of constant depth.) The HIBE scheme of Gentry and Silverberg
(as well as the IBE scheme of Boneh and Franklin [9]) uses random oracles in three ways: to map

8



identities to group elements, to efficiently achieve semantic security based on the computational
BDH assumption, and to obtain chosen-ciphertext security. The latter two uses of the random
oracle can be avoided if one is willing to rely on the decisional BDH assumption (to efficiently
achieve semantic security) and generic non-interactive zero-knowledge (to achieve chosen-ciphertext
security, as discussed further below). More interestingly, we show that the random oracle used
to map identities to group elements can be replaced by an O(`)-wise independent function (see
Section 2.2), where ` is the depth of the tree. Moreover, a proof of security may be obtained even
for trees of polynomial depth. We now provide the details.

Notation and conventions. Recall that ` denotes the depth of the tree. The i-bit prefix of
a string w1w2 · · ·wt is denoted by w|i. Namely, w|i = w1 · · ·wi. By convention, we set w|0 = ε
(i.e., the empty string) for any string w. Let H` denote a (2` + 1)-wise independent family of
functions with domain {0, 1}≤` and range G1; we may take essentially the construction described
in Section 2.2 except that we first apply a one-to-one encoding of elements in {0, 1}≤` as elements
in Zq (alternately, we can include in the public key a universal one-way hash function [32] mapping
{0, 1}≤` to Zq). Finally, IG is a BDH parameter generator.

Gen(1k, 1`) does the following:

1. Run IG(1k) to generate groups G1,G2 (of prime order q) and bilinear map ê.

2. Select a random generator P ∈ G1 and a random α ∈ Zq. Set Q = αP .

3. Choose a random function H ∈ H`.

4. The public key is PK = (G1,G2, ê, P, Q, H). The root secret key is SKε = αH(ε).

In general, the secret key of node w = w1 · · ·wt consists of t + 1 group elements and is denoted
by SKw = (Rw|0 , Rw|1 , . . . , Rw|t−1

, Sw) (for the special case of w = ε we simply have SKε = Sε =
αH(ε) and the other values are not present). With this in mind, we now describe the key derivation
algorithm.

Der(PK,w, SKw) does the following:

1. Let w = w1 · · ·wt. Parse SKw as (Rw|0 , Rw|1 , . . . , Rw|t−1
, Sw).

2. Choose random ρw ∈ Zq. Set Rw = ρwP , Sw0 = Sw + ρwH(w0), and Sw1 = Sw + ρwH(w1).

3. Output SKw0 = (Rw|0 , . . . , Rw, Sw0) and SKw1 = (Rw|0 , . . . , Rw, Sw1).

Enc(PK, w,M) (where M ∈ G2) does the following:

1. Let w = w1 · · ·wt. Select random γ ∈ Zq.

2. Output C = (γP, γH(w|1), γH(w|2), . . . , γH(w), M · d), where d = ê(Q,H(ε))γ .

Dec(PK,w, SKw, C) does the following:

1. Let w = w1 · · ·wt. Parse SKw as (Rw|0 , . . . , Rw|t−1
, Sw) and parse C as (U0, U1, . . . , Ut, V ).

2. Output M = V/d, where

d =
ê(U0, Sw)∏t

i=1 ê(Rw|i−1
, Ui)

.

9



We verify that decryption succeeds. When encrypting, we have d = ê(Q,H(ε))γ = ê(P, H(ε))αγ .
When decrypting, we have U0 = γP , and Ui = γH(w|i) for 1 ≤ i ≤ t (where t = |w|). Hence,

d =
ê(U0, Sw)∏t

i=1 ê(Rw|i−1
, Ui)

=
ê
(
γP, αH(ε) +

∑t
i=1 ρw|i−1

H(w|i)
)

∏t
i=1 ê

(
ρw|i−1

P, γH(w|i)
)

=
ê(P, H(ε))αγ ·∏t

i=1 ê (P, H(w|i))γρw|i−1

∏t
i=1 ê (P, H(w|i))γρw|i−1

= ê(P, H(ε))γα

and thus decryption recovers M .
Theorem 1 is established by the following proposition.

Proposition 1 If IG satisfies the decisional BDH assumption, the above BTE scheme is secure in
the sense of SN-CPA.

Proof Let `(·) be a polynomial, and set ` = `(k) in what follows. Given a ppt adversary A
attacking the above scheme in the sense of Definition 2, denote the probability that A succeeds by
PrA[Succ]. We construct an algorithm B that attempts to solve the decisional BDH problem with
respect to IG. Relating the advantage of B to the advantage of A gives the desired result. In the
description below we denote by w|ı the sibling of w|i; namely, w|ı consists of the (i− 1)-bit prefix
of w followed by the negation of the ith bit of w. (Thus, w|i and w|ı agree on their first i− 1 bits
and differ on their ith bit.)

Algorithm B is given the output (G1,G2, ê) of IG(1k) and also (P, Q = αP, Iε = βP, U0 =
γP, d = ê(P, P )µ); we will assume that P, Q, Iε, U0 are all generators of G1 since this occurs with
all but negligible probability. The goal of B (informally) is to determine whether µ = αβγ. For
that purpose, B simulates an instance of the encryption scheme for A as follows: B initiates a run
of A, and A commits to the target node w∗ = w∗1w

∗
2 · · ·w∗t (with t ≤ `).2 Now, for 1 ≤ i ≤ t, B

chooses χi, λi, and ϕi at random from Zq. If t < `, B also chooses λ0
t+1, λ1

t+1, and ϕt+1 at random
from Zq. Then B randomly chooses a hash function H : {0, 1}≤` → G1 from the family H` subject
to the following constraints:

1. H(ε) = Iε.

2. H(w∗|i) = χiP for 1 ≤ i ≤ t.

3. H(w∗|ı) = λiP − 1
ϕi

Iε for 1 ≤ i ≤ t.

4. If t < `, then also H(w∗0) = λ0
t+1P − 1

ϕt+1
Iε and H(w∗1) = λ1

t+1P − 1
ϕt+1

Iε.

(We assume the {ϕi} are invertible since this occurs with all but negligible probability.) Since
there are at most 2` + 1 constraints, B can efficiently choose a (random) H ∈ H` subject to these
constraints. Furthermore, since Iε is uniformly distributed in G1 and the χ- and λ-values are all
chosen independently and uniformly at random from Zq, this choice of H is distributed identically
to H in the real experiment. B sets PK = (G1,G2, ê, P,Q, H) and gives PK to A.

Next, B generates secret keys for siblings of the nodes on the path from the root to w∗, as well
as for the children of w∗ (in case t < `). Recall that from these secret keys A can derive appropriate

2We assume for simplicity that w∗ 6= ε; however, the proof may be easily adapted for that special case.

10



secret keys for any node w in the tree such that w is not a prefix of w∗. To generate these secret
keys, B sets (for 1 ≤ i ≤ t) Rw∗|i−1

= ϕiQ. Next, for all 1 ≤ i ≤ t, B sets

Sw∗|ı = λiϕiQ +
i−1∑

j=1

χjRw∗|j−1
. (1)

(For i = 1 the upper limit of the summation is less than the lower limit; by convention, we let the
sum in this case be 0.) Additionally, if t < ` then B sets Rw∗ = ϕt+1Q and also (for b ∈ {0, 1})
Sw∗b = λb

t+1ϕt+1Q +
∑t

j=1 χjRw∗|j−1
. Note that, having done so, B can now provide A with all

relevant secret keys.
We now verify that these keys have the correct distribution. Note first that the values Rw∗|0 ,

. . ., Rw∗|t−1
(and Rw∗ when t < `) are all uniformly distributed in G1, independent of each other

as well as PK. For 1 ≤ i ≤ t, let ρw∗|i−1
∈ Zq be the value such that Rw∗|i−1

= ρw∗|i−1
P ,

and notice that ρw∗|i−1
= ϕiα. Now, in a real execution of the experiment we would have Sw =

αH(ε) +
∑|w|

j=1 ρw|j−1
H(w|j) for any w. For w = w∗|ı this means

Sw∗|ı = αIε +




i−1∑

j=1

ρw∗|j−1
H(w∗|j)


 + ρw∗|i−1

H(w∗|ı)

= αIε +




i−1∑

j=1

ρw∗|j−1
χjP


 + ϕiα(λiP − 1

ϕi
Iε)

= λiϕiQ +
i−1∑

j=1

χjRw∗|j−1
,

exactly as constructed according to Eq. (1). The analysis for the nodes w∗0 and w∗1 (in case t < `)
is analogous.

After providing the appropriate secret keys, B responds to the query challenge(M0,M1) from A
using the elements U0 and d that it got as input. Specifically, B chooses a random bit b and returns

C = (U0, χ1U0, . . . , χtU0, d ·Mb) = (γP, χ1γP, . . . , χtγP, ê(P, P )µ ·Mb)
= (γP, γH(w∗|1), . . . , γH(w∗), ê(P, P )µ ·Mb).

Finally, if A outputs b′ = b then B outputs “1”; otherwise, B outputs “0”.
Recalling that Q = αP and H(ε) = Iε = βP , we can rewrite the last component of C as

(ê(Q,H(ε))γ)µ/αβγ ·Mb. Thus, if µ = αβγ then C is indeed a (random) valid encryption of Mb and
the probability that B outputs 1 is exactly PrA[Succ]. On the other hand, when µ is random the last
element of C is uniformly distributed in G2, independent of b, and therefore C is independent of b.
In this case, then, B outputs 1 with probability 1/2. The advantage of B is therefore (negligibly
close to) |PrA[Succ] − 1/2|; since the advantage of B is negligible (by assumption on IG), the
advantage of A must be negligible as well.

Scheme parameters. We calculate the efficiency of the above scheme as a function of the tree
depth `, assuming H` is the hash family described in Section 2.2. The public key has length O(`).
A secret key of a node w at level t consists of t + 1 elements of G1. (Interestingly, however, the
elements Rw|0 , Rw|1 , . . . , Rw|t−1

of the secret key need not be kept secret for security to hold. This
is an immediate consequence of the fact that these values are contained, anyway, in the secret keys

11



of the children of w.) The key-generation algorithm requires time linear in `, where this complexity
is due to selection of H. The key-derivation algorithm requires a constant number of operations
in G1 and two evaluations of H; a single evaluation of H requires time O(`). Encryption for a node
at level t requires t evaluations of H, t + 1 multiplications in G1, one application of ê, and one
multiplication and one exponentiation in G2. In the worst case, when t = `, the dominating term
is the O(`) evaluations of H and thus encryption can be done in time O(`2). For H as described
in Section 2.2 this can be improved using algorithms for simultaneous polynomial evaluation at
multiple points [2, Section 8.5] to yield a running time of O(` log2 `). Decryption by a node at
level t requires t + 1 evaluations of ê and t multiplications/divisions in G2.

Construction in the random oracle model. The scheme above can be proven secure if H is
replaced with a cryptographic hash function modeled as a random oracle. (A proof of security is
immediate since a random oracle, in particular, acts as a (2` + 1)-wise independent hash function
for any polynomial `.) Instantiating H in this way, and assuming that the time to evaluate H is
independent of the input length, improves several of the scheme parameters: the public-key size,
key-generation time, and key-derivation time are now independent of `, and encryption now takes
time O(`).

Once we are working in the random oracle model, the scheme may be further modified so that
its security is based on the computational BDH assumption3 rather than the decisional version:
simply replace the component M · ê(Q,H(ε))γ of the ciphertext by M ⊕ H ′(ê(Q, H(ε))γ), where
H ′ : G2 → {0, 1}n is modeled as an independent random oracle and M is now an n-bit string.

3.2 Achieving Chosen-Ciphertext Security

We sketch how our schemes may be modified so as to achieve security in the sense of SN-CCA. In
the standard model, we may apply the techniques of Sahai [37] based on earlier work of Naor and
Yung [33]; namely, we may use simulation-sound NIZK proofs4 [37, Definition 3.2] to achieve chosen-
ciphertext security. In more detail (we assume the reader is familiar with [37]), we construct a BTE
scheme secure in the sense of SN-CCA as follows: The public key consists of a randomly-generated
string r for a simulation-sound NIZK proof system, as well as two independently-generated public
keys PK1, PK2 for a BTE scheme secure in the sense of SN-CPA. The root secret key is the
secret key SKε corresponding to PK1, and key derivation is done in the obvious way. To encrypt
message M for node w, the sender chooses random coins ω1, ω2, computes C1 = Enc(PK1, w, M ; ω1),
C2 = Enc(PK2, w, M ; ω2), and then generates a simulation-sound NIZK proof of consistency π
(explained in more detail below) using the string r; the output ciphertext is C = 〈w, C1, C2, π〉.
The proof π guarantees that (w, C1, C2, PK1, PK2) is in the NP-language L defined by

L = {(w, C1, C2, PK1, PK2) |
∃M, ω1, ω2 s.t. C1 = Enc(PK1, w, M ; ω1) and C2 = Enc(PK2, w, M ;ω2)};

that is, C1 and C2 are both encryptions of the same message M for the specified node w. Node w

with secret key SKw decrypts ciphertext 〈w′, C1, C2, π〉 by first checking whether w′ ?= w and then
verifying that π is a valid proof (with respect to r) of the statement (w′, C1, C2, PK1, PK2) ∈ L.
If so, the output is Dec(PK1, w, SKw, C1); otherwise, the output is ⊥. A proof that the above

3It is also possible to construct a scheme based on the computational BDH assumption in the standard model (by
extracting hard-core bits); however, this will result in a much less efficient scheme.

4As in [37], we also require the proof system to satisfy the technical conditions of having unpredictable and
uniquely-applicable proofs. For brevity, we do not explicitly mention this in the discussion that follows.

12



scheme is secure in the sense of SN-CCA exactly follows the analogous proof of [37, Thm. 4.1], and
is therefore omitted.

Simulation-sound NIZK proofs (admitting efficient provers) for all of NP may be based on
the assumption of (certified) trapdoor permutations [19, 7, 37]. We observe, additionally, that
simulation-sound NIZK in the common reference string model5 may also be based on the decisional
BDH assumption. To see this, note that Sahai’s construction [37] of simulation-sound NIZK requires
only the existence of one-way functions (which is implied by the decisional BDH assumption) in
addition to any single-theorem adaptive NIZK proof system (see Definition 2.2 of [37]). The latter,
in turn, may be constructed using the “hidden-bits paradigm” set forth in [19] (see Section 4.10.2
of [22]). We observe in Appendix A that: (1) the “hidden-bits paradigm” (which is achieved using
trapdoor permutations in [19]) can be implemented using what we call publicly-verifiable trapdoor
predicates, a generalization of trapdoor permutations considered previously [18] and formally defined
in Appendix A; furthermore, (2) the computational BDH assumption (and thus the decisional BDH
assumption as well) gives rise to a publicly-verifiable trapdoor predicate. Finally, since the string r
for the NIZK proof (included with the public key) is generated by the receiver — and not by some
third party — working in the common reference string model is sufficient for our purposes.

Combining the results outlined in the preceding paragraphs yields the following:

Theorem 2 Under the decisional BDH assumption, there exists a BTE scheme that is secure in
the sense of SN-CCA.

In the random oracle model, we can achieve a more efficient scheme secure in the sense of
SN-CCA by applying, e.g., a variant of the Fujisaki-Okamoto transformation [20] (note that the
Fujisaki-Okamoto transformation only applies to standard PKE and must be appropriately modified
for the case of BTE). In particular: let Enc denote the encryption algorithm for a BTE scheme BT E
secure in the sense of SN-CPA which encrypts messages at least as long as the security parameter.
To simplify6 the proof, we will assume that Enc satisfies a technical condition that we call the
“unique randomness property”: namely, that for any public key PK and any ciphertext C there is
at most one set of random coins r for which there exist (w, M) satisfying

C = Enc(PK,w, M ; r).

(Note that for the given r, there may be multiple (w,M) satisfying the above.) It is easy to see that
the BTE scheme constructed in the previous section satisfies this condition if we let r represent the
random γ ∈ Zq used for encryption (rather than the random bits used to generate γ). Let H and G
denote independent random oracles (with appropriate ranges) which are also independent of any
random oracles used by Enc. Consider then the BTE scheme in which encryption is performed as

Enc′(PK, w,M) = 〈Enc(PK, w, σ; H(w, σ,M)), G(σ)⊕M〉
for randomly chosen σ of length k, the security parameter. Key generation and key derivation
are done exactly as in the original BTE scheme BT E . A node w with secret key SKw de-
crypts ciphertext 〈C1, C2〉 by computing σ = Dec(PK,w, SKw, C1) and M = G(σ) ⊕ C2. If
C1

?= Enc(PK,w, σ;H(w, σ,M)), the output is M ; otherwise, the output is ⊥. Security of this
modified scheme is given by the following theorem, whose proof appears in Appendix B:

5In the common reference string model — as distinguished from the common random string model — the string r
may be chosen from an arbitrary, poly-time computable distribution (and not necessarily a uniform one); furthermore,
the coins used to generate r are kept secret.

6A proof does not seem to require this assumption, but making the assumption allows us to avoid having to deal
with some annoying technicalities. See footnote 7 in Appendix B.

13



Theorem 3 If BT E is secure in the sense of SN-CPA and satisfies the unique randomness property,
then the above construction yields a BTE scheme secure in the sense of SN-CCA in the random
oracle model.

4 Forward-Secure Public-Key Encryption

Here, we provide a definition of security for forward-secure public-key encryption and mention two
“trivial” forward-secure schemes whose complexity is linear in the total number of time periods.
As our main result of this section, we then describe a construction of a forward-secure encryption
scheme all of whose parameters grow at most poly-logarithmically with the total number of time
periods. This construction builds on the BTE primitive discussed in the previous section.

4.1 Definitions

We first provide a syntactic definition of key-evolving public-key encryption schemes, and then
define what it means for such a scheme to achieve forward security. The former is a straightforward
adaptation of the notion of key-evolving signature schemes [5]; the latter, however, is new.

Definition 4 A (public-key) key-evolving encryption (ke-PKE) scheme is a 4-tuple of ppt algo-
rithms (Gen, Upd, Enc, Dec) such that:

• The key generation algorithm Gen takes as input a security parameter 1k and the total number
of time periods N . It returns a public key PK and an initial secret key SK0. (We assume N
is implicit in PK.)

• The key update algorithm Upd takes as input PK, an index i ∈ [0, N − 1) of the current time
period, and the associated secret key SKi. It returns the secret key SKi+1 for the following
time period.

• The encryption algorithm Enc takes as input PK, an index i ∈ [0, N) of a time period, and
a message M . It returns a ciphertext C.

• The decryption algorithm Dec takes as input PK, an index i ∈ [0, N) of the current time
period, the associated secret key SKi, and a ciphertext C. It returns a message M or ⊥.

We make the obvious correctness requirement: namely, for any (PK, SK0) output by Gen(1k, N),
any index i ∈ [0, N) and secret key SKi correctly generated for this time period, and any message M ,
we have M = Dec(PK, i, SKi,Enc(PK, i, M)). ♦

Our definitions of forward-secure public-key encryption generalize the standard notions of se-
curity for public-key encryption, similar to the way in which the definitions of [5] generalize the
standard notion of security for signature schemes.

Definition 5 A ke-PKE scheme is forward-secure against chosen-plaintext attacks (secure in the
sense of fs-CPA) if for all polynomials N(·), the advantage of any ppt adversary in the following
game is negligible in the security parameter k (in the following, let N = N(k)):

Setup: Gen(1k, N) outputs (PK, SK0). The adversary is given PK.

Attack: The adversary issues one breakin(i) query and one challenge(j,M0,M1) query, in either
order, subject to 0 ≤ j < i < N . These queries are answered as follows:

14



• On query breakin(i), key SKi is computed via repeated application of Upd in the obvious way.
This key is then given to the adversary.

• On query challenge(j, M0,M1), a random bit b is selected and the adversary is given C∗ =
Enc(PK, j, Mb).

Guess: The adversary outputs a guess b′ ∈ {0, 1}; it succeeds if b′ = b. The adversary’s advantage
is the absolute value of the difference between its success probability and 1/2. ♦
We give an analogous definition incorporating chosen-ciphertext attacks by the adversary.

Definition 6 A ke-PKE scheme is forward-secure against chosen-ciphertext attacks (secure in the
sense of fs-CCA) if for all polynomials N(·), the advantage of any ppt adversary in the following
game is negligible in the security parameter k (again, let N = N(k)):

Setup: Gen(1k, N) outputs (PK, SK0). The adversary is given PK.

Attack: The adversary issues one breakin(i) query, one challenge(j,M0,M1) query, and multiple
Dec∗(k, C) queries, in any order, subject to 0 ≤ j < i < N and k ∈ [0, N). These queries are
answered as follows:

• The breakin and challenge queries are answered as in Definition 5.

• On query Dec∗(k, C), the appropriate key SKk is first derived via repeated application of
Upd in the obvious way. The adversary is then given the output Dec(PK, k, SKk, C). If
the adversary has already received response C∗ from query challenge(j, M0,M1), then query
Dec∗(j, C∗) is disallowed (but queries Dec∗(k, C∗) with k 6= j, and Dec∗(j, C) with C 6= C∗,
are allowed).

Guess: The adversary outputs a guess b′ ∈ {0, 1}; it succeeds if b′ = b. The adversary’s advantage
is the absolute value of the difference between its success probability and 1/2. ♦

The discussion in Remark 1 applies here as well in case the key-update algorithm is randomized.
Actually, things are slightly easier here: since N is polynomial in k, we may as well assume that
all secret keys for all time periods are generated at the outset of the experiment, and then used (as
needed) to answer the oracle queries of A.

Remark 2 (On the Order of the Breakin/Challenge Queries). The definitions above allow the
adversary to make the breakin and the challenge queries in either order. Without loss of general-
ity, however, we may assume the adversary makes the breakin query first. (Specifically, given an
adversary A that queries challenge(j, M0, M1) before its breakin query, it is easy to construct an
adversary B that queries breakin(j + 1) followed by this same challenge query and can then answer
any subsequent breakin query of A; this B will achieve the same advantage as A.)

Interestingly, requiring the adversary to make the challenge query first seems to result in slightly
weaker concrete security. Specifically, transforming an adversary that first makes the breakin query
into an adversary that first makes the challenge query results in a factor of N degradation in the
advantage due to the need to guess the location of the eventual challenge query in advance. Since N
is polynomial in k, this reduction in security is tolerable. Still, it is better to avoid it.

15



4.2 Forward-Secure PKE Schemes with Linear Complexity

For completeness, we discuss some simple approaches to forward-secure PKE yielding schemes with
linear complexity in at least some parameters. One trivial solution is to generate N independent
public-/private-key pairs {(ski, pki)} for any standard PKE scheme and to set PK = (pk0, . . .,
pkN−1). In this scheme, the key SKi for time period i will simply consist of (ski, . . ., skN−1).
Algorithms for encryption, decryption, and key update are immediate. The drawback of this
trivial solution is an N -fold increase in the sizes of the public and secret keys, as well as in the
key-generation time. Anderson [3] noted that a slightly improved solution can be built using any
identity-based encryption scheme. Here, the public key is the “master public key” of the identity-
based scheme, and SKi is the secret key corresponding to the “identity” i (the scheme is otherwise
identical to the above). This solution achieves O(1) public key size, but still has O(N) secret-key
size and key-generation time.

One can improve upon this last solution somewhat: instead of a large secret key, the user may
store a large non-secret file containing one record per period. The record for period i contains
the secret key SKi encrypted with respect to the public key and time period i− 1. At the begin-
ning of period i, the user obtains record i, uses its current key SKi−1 to recover SKi, and then
erases SKi−1. This solution achieves essentially the same efficiency as the forward-secure signatures
of Krawczyk [30] and in particular requires O(N) non-secret storage and key-generation time.

4.3 A Construction with Poly-Logarithmic Complexity in All Parameters

We now construct an encryption scheme secure in the sense of fs-CPA (resp., fs-CCA) from any
BTE scheme secure in the sense of SN-CPA (resp., SN-CCA). Our construction is straightforward
and is easily seen to be secure given the machinery we have developed for BTE schemes in Section 3.

At a high level, the construction proceeds as follows: To obtain a forward-secure scheme with
N = 2`+1 − 1 time periods (labeled 0 through N − 1), we use a BTE of depth ` and associate
the time periods with all nodes of the tree according to a pre-order traversal. Namely, letting wi

denote the node associated with period i, we have:

• w0 = ε (i.e., the root of the tree).

• If wi is an internal node then wi+1 = wi0.

• If wi is a leaf node and i < N − 1 then wi+1 = w′1, where w′ is the longest string such
that w′0 is a prefix of wi.

The public key will simply be the public key for the BTE scheme; the secret key for period i will
consist of the secret key (in the underlying BTE scheme) for node wi as well as the secret keys
for all right siblings of the nodes on the path from the root to wi. To encrypt a message at time
period i, the message is simply encrypted for node wi using the BTE scheme; decryption is done
in the obvious way using the secret key for node wi (which is stored as part of the secret key
for period i). Finally, the secret key is updated at the end of period i in the following manner:
if wi is an internal node, then the secret keys for wi+1 and its sibling (i.e., the two children of wi)
are derived as in the underlying BTE scheme; otherwise, the secret key for node wi+1 is already
stored as part of the secret key. In either case, the key for node wi is then deleted. Note that this
maintains the property that SKi+1 contains the secret key for wi+1 as well as the secret keys for
all right siblings of the nodes on the path from the root to wi+1. Also, only O(`) secret keys of the
underlying BTE scheme are stored as part of the secret key of the forward-secure scheme at any
point in time.

16



Our method of associating time periods with nodes of a binary tree is reminiscent of previous
tree-based forward-secure signature schemes [5, 1, 31]. However, we associate time periods with all
nodes of a binary tree rather than with the leaves only (as was done in prior work); this results in an
efficiency improvement from O(log N) to O(1) in the key-generation and (worst-case) key-update
times. We remark that our tree-traversal method can also be applied to the signature schemes of
[5, 1, 31] with similar efficiency gains for the worst-case complexity of these algorithms.

More formally, given a BTE scheme (Gen, Der, Enc, Dec), we may construct a ke-PKE scheme
(Gen′, Upd, Enc′, Dec′) as follows:

• Algorithm Gen′(1k, N) runs Gen(1k, 1`), where ` is the smallest integer satisfying N ≤ 2`+1−1,
and obtains PK,SKε. It then outputs PK ′ = (PK, N), and SK ′

0 = SKε.

• Algorithm Upd(PK, i, SK ′
i) has SK ′

i organized as a stack of node keys, with the secret
key SKwi on top. We first pop this key off the stack. If wi is a leaf node, the next
key on top of the stack is SKwi+1 and we are done. If wi is an internal node, compute
(SKwi0, SKwi1) ← Der(PK,wi, SKwi) and push SKwi1 and then SKwi0 onto the stack. The
new key on top of the stack is SKwi0 (and indeed wi+1 = wi0). In either case, node key SKwi

is then erased and the new stack of node keys is returned.

• Algorithm Enc′(PK ′, i, M) runs Enc(PK, wi,M). Note that wi is publicly computable (in
O(log N) time) given i and N .

• Algorithm Dec′(PK ′, i, SK ′
i,M) runs Dec(PK, wi, SKwi ,M), where SKwi is the node key on

top of the stack of keys stored as part of SK ′
i.

Theorem 4 If BTE scheme (Gen,Der, Enc,Dec) is secure in the sense of SN-CPA (resp., SN-CCA)
then ke-PKE scheme (Gen′, Upd,Enc′, Dec′) is secure in the sense of fs-CPA (resp., fs-CCA).

Proof The proof proceeds via a straightforward reduction. Assume we have an adversary A′ with
advantage Adv(k) in an fs-CPA (resp., fs-CCA) attack against (Gen′,Upd, Enc′, Dec′). We construct
an adversary A with advantage Adv(k)/N(k) in the corresponding attack against the underlying
BTE scheme (Gen, Der, Enc,Dec). Since N = N(k) is polynomial in the security parameter k, the
theorem follows. We now define adversary A:

1. A chooses uniformly at random a time period i∗ ∈ [0, N) and outputs wi∗ . Next, A obtains
the public key PK and the appropriate secret keys for the BTE scheme.

2. A runs A′ with public key (PK, N).

3. When A′ queries breakin(j) (recall from Remark 2 that without loss of generality A′ makes
its breakin query before its challenge query), if j ≤ i∗ then A outputs a random bit and halts.
Otherwise, A computes the appropriate secret key SK ′

j and gives this to A′. (Observe that A
can efficiently compute SK ′

j for j > i∗ from the secret keys it has been given.)

4. When A′ queries challenge(i,M0, M1), if i 6= i∗ then A outputs a random bit and halts.
Otherwise, A obtains C ← challenge(M0,M1) and gives ciphertext C to A′.

5. If decryption queries are allowed, note that A can respond to queries Dec′∗(k, C) of A′ by
simply querying Dec∗(wk, C) and returning the result to A′.

6. When A′ outputs b′, A outputs b′ and halts.

17



It is straightforward to see that when i∗ = i the copy of A′ running within A has exactly the same
view as in a real fs-CPA (resp., fs-CCA) interaction. Since A guesses i∗ = i with probability 1/N ,
we have that A correctly predicts the bit b with advantage Adv(k)/N .

Scheme parameters. Each of the four operations of the FSE scheme (key generation, key update,
encryption, and decryption) requires at most one corresponding operation of an underlying BTE
scheme of depth ` = O(log N). The secret key of the FSE scheme at any time period consists of at
most O(log N) node secret keys of the underlying BTE scheme. Since node secret keys in the BTE
scheme constructed in Section 3.1 are of size at most O(log N), this immediately implies an FSE
scheme in which secret keys have size O(log2 N). For the specific construction of a BTE scheme
given in Section 3.1, however, we may notice that for any node w at depth |w| = t all elements of
the node secret key except for Rw|t−1

and Sw already appear in the secret key of the parent of w.
Thus, when using this BTE scheme to construct an FSE scheme, secret keys for the FSE scheme
can in fact be stored using only O(log N) space. This justifies the claims given in Table 1 (for
schemes achieving security in the sense of fs-CPA), and yields the following corollary:

Corollary 1 Under the decisional BDH assumption, there exists a ke-PKE scheme that is secure
in the sense of fs-CPA. Furthermore, all parameters of this scheme are poly-logarithmic in the total
number of time periods.

Supporting an unbounded number of time periods. In our description above, we have
assumed that the number of time periods N is known at the time of key generation. However, it
is easy to modify our scheme to support an “unbounded” (i.e., arbitrary polynomial) number of
time periods by using a BTE scheme with depth ` = ω(log k). Following the techniques of [31],
we can further improve this scheme so that its efficiency depends only poly-logarithmically on the
number of time periods elapsed thus far (note that a simple pre-order traversal using a tree of depth
ω(log k) results in a scheme with super-logarithmic dependence on N for any N = poly(k)).

5 Hierarchical Identity-Based Encryption

Here we show how one can construct a full-blown hierarchical identity-based encryption (HIBE)
scheme from any BTE scheme. (As noted in the introduction, the security we obtain for the
resulting identity-based scheme is slightly weaker than the notion of security considered in earlier
work on identity-based encryption [9, 21].)

We begin by providing a syntactic definition of HIBE essentially following [26, 21]. We then
introduce the notion of “selective identity” security for HIBE, and show how to transform any
secure BTE scheme into a secure HIBE scheme.

5.1 Definitions

In all the definitions below, an ID-vector v is a vector of strings, i.e., v ∈ ({0, 1}∗)∗. The empty
vector is denoted by (). If v = (v1, . . . , v`) is an ID-vector and v`+1 is any string, then by v.v`+1 we
mean the ID-vector (v1, . . . , v`, v`+1). For two ID-vectors u = (u1, . . . , u`1) and v = (v1, . . . , v`2),
we say that u is a prefix of v if `1 ≤ `2 and ui = vi for i ≤ `1.

Definition 7 A hierarchical identity-based encryption (HIBE) scheme is a 4-tuple of ppt algorithms
(Gen, Ext, Enc, Dec) such that:

18



• The key-generation algorithm Gen takes as input a security parameter 1k and a value 1` for
the depth of the tree. It returns a master public key PK and a root secret key SK(). We
assume that 1k and 1` are implicit in PK.

• The key-extraction algorithm Ext takes the public key PK, an ID-vector v ∈ ({0, 1}∗)<` and
its associated secret key SKv, and a string r. It returns the secret key SKv.r associated with
the ID-vector v.r.

• The encryption algorithm Enc takes a public key PK, an ID-vector v ∈ ({0, 1}∗)≤`, and a
message M . It returns a ciphertext C.

• The decryption algorithm Dec takes as input a public key PK, an ID-vector v ∈ ({0, 1}∗)≤`

and its associated secret key SKv, and a ciphertext C. It returns a message M or symbol ⊥.

We make the natural correctness requirement: namely, for any (PK, SK()) output by Gen(1k, 1`),
any ID-vector v ∈ ({0, 1}∗)≤` and secret key SKv correctly generated for this ID-vector, and any
message M , we have M = Dec(PK, v, SKv,Enc(PK, v, M)). ♦

The notion of “selective identity” security we present is a relaxation of the notion of security
for IBE/HIBE schemes considered previously, and requires that the attacker commit to a “target”
ID-vector (or, in the case of IBE, a “target” identity) before it sees the public key. (Previous
definitions allow the adversary to choose the target ID-vector/identity adaptively, as a function
of the public key as well as any secret keys it obtains.) Other than this, our definition follows
that given in [21]. We provide a definition for the case of chosen-plaintext security; an analogous
definition of security against selective-identity, chosen-ciphertext attacks (SI-CCA) is the obvious
extension of this, and is omitted.

Definition 8 A HIBE scheme is secure against selective-identity, chosen-plaintext attacks (SI-CPA)
if for all polynomials `(·), the advantage of any ppt adversary A in the following game is negligible
in the security parameter k (we set ` = `(k) in what follows):

1. The adversary A(1k, 1`) outputs an ID-vector v∗ ∈ ({0, 1}∗)≤`.

2. Algorithm Gen(1k, 1`) outputs (PK,SK()). The adversary is given PK.

3. The adversary may adaptively ask for the secret key(s) corresponding to any ID-vector(s) v,
as long as v is not a prefix of the target ID-vector v∗. The adversary is given the secret
key SKv correctly generated for v using the Ext algorithm.

4. The adversary generates a request challenge(M0,M1) with |M0| = |M1|. A random bit b is
selected and the adversary is given C∗ = Enc(PK, v∗,Mb).

5. The adversary can keep asking for secret keys as above, even after seeing C∗.

At the end of the game the adversary outputs b′ ∈ {0, 1}; it succeeds if b′ = b. The adversary’s
advantage is the absolute value of the difference between its success probability and 1/2. ♦
The discussion in Remark 1 applies here as well in case the key-extraction algorithm is randomized.

19



5.2 From BTE to HIBE

We now show the transformation from a BTE scheme to a HIBE scheme. In the transformation,
we will use universal one-way hashing [32] to map an ID-vector with a bounded number of entries
to a bounded-length string by applying the hash function separately to each entry in the vector and
then concatenating the results. We thus obtain a string whose length depends only on the number
of entries in the input ID-vector (and not the length of these entries).

Universal one-way hashing. A universal one-way hash function (UOWHF) [32] consists of
two algorithms: a seed-generation algorithm sGen that (given the security parameter k in unary)
outputs a seed s, and a hashing algorithm Hash that given a seed s and an input string of some
polynomial length, produces a k-bit output string. A collision for a seed s is a pair of distinct
inputs x, x′ such that Hash(s, x) = Hash(s, x′). Security of a UOWHF (sGen, Hash) requires that
no adversary can find a collision involving an input string x chosen before selection of s; formally,
for all ppt A the following is negligible:

Pr[x ← A(1k); s ← sGen(1k);x′ ← A(1k, s, x) : x′ 6= x ∧ Hash(s, x′) = Hash(s, x)].

We remark that a collision-resistant hash function [15] is also a UOWHF; however, constructions
of UOWHFs are known based on the minimal assumption of one-way functions [36].

It will be convenient to define some notation for the entry-wise application of a hash function
to an ID-vector. If s is a seed output by sGen(1k) and v = (v1, . . . , v`) is an ID-vector, then we
let w = Hash(s, v) refer to the string Hash(s, v1)| · · · |Hash(s, v`). Note that if v ∈ ({0, 1}∗)t then
w ∈ {0, 1}kt.

The construction. Our construction proceeds by identifying the ID-vector v ∈ ({0, 1}∗)≤` with
the node w = H(s, v) in a binary tree of depth k`; then, to encrypt a message destined for user v,
the message is encrypted for this node w using an underlying BTE scheme. In more detail, given a
UOWHF (sGen, Hash) and a BTE scheme (Gen, Der, Enc, Dec), we may construct a HIBE scheme
(Gen′, Ext, Enc′, Dec′) as follows:

• Algorithm Gen′(1k, 1`) runs Gen(1k, 1k`) and obtains (PK,SKε). It also runs sGen(1k) and
obtains a seed s. The public key of the HIBE is PK ′ = (s, PK) and the root secret key is
SK ′

() = SKε.

• Algorithm Ext(PK ′, v, SK ′
v, r) sets w = Hash(s, v) and w′ = Hash(s, r) (with |w′| = k). For

i = 1, . . . , k, algorithm Ext uses algorithm Der to derive the BTE secret key SKw(w′|i) from
the BTE secret key SKw(w′|i−1). (Recall that the given secret key SK ′

v is nothing more than
the secret key SKw for the BTE scheme.) The HIBE secret key is then set to SK ′

v.r = SKww′ .

• Algorithm Enc′(PK ′, v, M) runs Enc(PK, w, M), where w = Hash(s, v).

• Algorithm Dec′(PK ′, v, SK ′
v,M) runs Dec(PK,w, SKw,M), where w = Hash(s, v).

Theorem 5 If (sGen, Hash) is a UOWHF and (Gen, Der, Enc, Dec) is a BTE scheme secure in
the sense of SN-CPA (resp., SN-CCA), then (Gen′, Ext, Enc′, Dec′) is a HIBE scheme secure in
the sense of SI-CPA (resp., SI-CCA).

Proof The proof is immediate. Given an adversary A that attacks the HIBE scheme (in either
the CPA or CCA scenario), we build an adversary B that attacks the underlying BTE scheme (in

20



the same scenario). The adversary B implements for A an HIBE scheme exactly as above, choosing
the seed s for the hash function according to sGen(1k).

When A commits to its target ID-vector v∗, the adversary B commits to its target node w∗ =
Hash(s, v∗). Then B uses its own queries to the BTE scheme to answer all of the queries that A
makes to the HIBE scheme, with only two possible exceptions. One exception occurs in case A
asks for a secret key SK ′

v, corresponding to ID-vector v, such that v is not a prefix of the target
ID-vector v∗ but w = Hash(s, v) is a prefix of the target node w∗ = Hash(s, v∗). The other exception
(that can only occur in the CCA scenario) occurs in case A asks a decryption query Dec∗(v, C∗) such
that v 6= v∗ but Hash(s, v) = Hash(s, v∗). It is easy to see that either of these cases yields a collision
in the hash function involving an entry in the ID-vector v∗. Since A commits to the target ID-
vector v∗ before obtaining the seed s (which is included as part of the public key), a straightforward
hybrid argument shows that the probability of such a collision occurring is negligible. Thus, B’s
advantage is only negligibly smaller than the advantage of A.

Since a universal one-way hash function may be constructed from any one-way function [36]
(and thus, in particular, from any BTE scheme), we obtain the following result:

Theorem 6 Assuming the existence of a BTE scheme secure in the sense of SN-CPA (resp., SN-
CCA), there exists a HIBE scheme secure in the sense of SI-CPA (resp., SI-CCA).

Acknowledgments

The third author is very grateful to Craig Gentry for helpful discussions regarding [21] and for
providing a preliminary version of that work. We also thank the anonymous referees for their
helpful feedback.

References

[1] M. Abdalla and L. Reyzin. A New Forward-Secure Digital Signature Scheme. Advances in
Cryptology — Asiacrypt 2000, LNCS vol. 1976, Springer-Verlag, pp. 116–129, 2000.

[2] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[3] R. Anderson. Two Remarks on Public Key Cryptology. Invited Lecture, ACM CCCS ’97.
Available at http://www.cl.cam.ac.uk/ftp/users/rja14/forwardsecure.pdf.

[4] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of Security
for Public-Key Encryption Schemes. Advances in Cryptology — Crypto ’98, LNCS vol. 1462,
Springer-Verlag, pp. 26–45, 1998.

[5] M. Bellare and S. K. Miner. A Forward-Secure Digital Signature Scheme. Advances in Cryp-
tology — Crypto ’99, LNCS vol. 1666, Springer-Verlag, pp. 431–448, 1999.

[6] M. Bellare and B. Yee. Forward Security in Private-Key Cryptography. RSA Cryptographers’
Track — CT-RSA 2003, LNCS vol. 2612, Springer-Verlag, pp. 1–18, 2003.

[7] M. Bellare and M. Yung. Certifying Permutations: Non-Interactive Zero-Knowledge Based on
any Trapdoor Permutation. J. Cryptology 9(3): 149–166 (1996).

21



[8] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical Identity Based Encryption with Constant
Size Ciphertext. Advances in Cryptology — Eurocrypt 2005, LNCS vol. 3494, Springer-Verlag,
pp. 440–456, 2005.

[9] D. Boneh and M. Franklin. Identity Based Encryption from the Weil Pairing. SIAM J. Com-
puting 32(3): 586–615 (2003).

[10] D. Boneh and J. Katz. Improved Efficiency for CCA-Secure Cryptosystems Built Using
Identity-Based Encryption. RSA Cryptographers’ Track — CT-RSA 2005, LNCS vol. 3376,
Springer-Verlag, pp. 87–103, 2005.

[11] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited. J. ACM
51(4): 557–594 (2004).

[12] R. Canetti, S. Halevi, and J. Katz. A Forward-Secure Public-Key Encryption Scheme. Advances
in Cryptology — Eurocrypt 2003, LNCS vol. 2656, Springer-Verlag, pp. 255–271, 2003.

[13] R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-Based Encryp-
tion. Advances in Cryptology — Eurocrypt 2004, LNCS vol. 3027, Springer-Verlag, pp. 207–222,
2004.

[14] R. Canetti, S. Halevi, and J. Katz. Adaptively-Secure, Non-Interactive Public-Key Encryption.
2nd Theory of Cryptography Conference (TCC), LNCS vol. 3378, Springer-Verlag, pp. 150–168,
2005. Full version available at http://eprint.iacr.org/2004/317.

[15] I. Damg̊ard. Collision Free Hash Functions and Public-Key Signature Schemes. Advances in
Cryptology — Eurocrypt ’87, LNCS vol. 304, Springer-Verlag, pp. 203–216, 1988.

[16] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. Advances in Cryptology — Crypto ’89,
LNCS vol. 435, Springer-Verlag, pp. 307–315, 1990.

[17] W. Diffie, P. C. Van-Oorschot, and M. J. Weiner. Authentication and Authenticated Key
Exchanges. Designs, Codes, and Cryptography 2(2): 107–125 (1992).

[18] Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong Key-Insulated Signature Schemes. Public-Key
Cryptography — PKC 2003, LNCS vol. 2567, Springer-Verlag, pp. 130–144, 2003.

[19] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under
General Assumptions. SIAM J. Computing 29(1): 1–28 (1999).

[20] E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric Encryption
Schemes. Advances in Cryptology — Crypto ’99, LNCS vol. 1666, Springer-Verlag, pp. 537–
554, 1999.

[21] C. Gentry and A. Silverberg. Hierarchical Identity-Based Cryptography. Advances in Cryptol-
ogy — Asiacrypt 2002, LNCS vol. 2501, Springer-Verlag, pp. 548–566, 2002.

[22] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge University Press,
2001.

[23] O. Goldreich. Foundation of Cryptography, vol. 2: Basic Applications. Cambridge University
Press, 2004.

22



[24] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attacks. SIAM J. Computing 17(2): 281–308 (1988).

[25] C.G. Günther. An Identity-Based Key-Exchange Protocol. Advances in Cryptology — Euro-
crypt ’89, LNCS vol. 434, Springer-Verlag, pp. 29–37, 1990.

[26] J. Horwitz and B. Lynn. Toward Hierarchical Identity-Based Encryption. Advances in Cryp-
tology — Eurocrypt 2002, LNCS vol. 2332, Springer-Verlag, pp. 466–481, 2002.

[27] G. Itkis and L. Reyzin. Forward-Secure Signatures with Optimal Signing and Verifying. Ad-
vances in Cryptology — Crypto 2001, LNCS vol. 2139, Springer-Verlag, pp. 499–514, 2001.

[28] A. Joux and K. Nguyen. Separating Decision Diffie-Hellman from Diffie-
Hellman in Cryptographic Groups. Manuscript, January 2001. Available at
http://eprint.iacr.org/2001/003/.

[29] A. Kozlov and L. Reyzin. Forward-Secure Signatures with Fast Key Update. Security in Com-
munication Networks, LNCS vol. 2576, Springer-Verlag, pp. 247–262, 2002.

[30] H. Krawczyk. Simple Forward-Secure Signatures From any Signature Scheme. 10th ACM Con-
ference on Computer and Communications Security, ACM, pp. 108–115, 2000.

[31] T. Malkin, D. Micciancio, and S. K. Miner. Efficient Generic Forward-Secure Signatures with
an Unbounded Number of Time Periods. Advances in Cryptology — Eurocrypt 2002, LNCS
vol. 2332, Springer-Verlag, pp. 400–417, 2002.

[32] M. Naor and M. Yung. Universal One-Way Hash Functions and Their Cryptographic Appli-
cations. 21st ACM Symposium on Theory of Computing (STOC), ACM, pp. 33–43, 1989.

[33] M. Naor and M. Yung, Public Key Cryptosystems Provably Secure Against Chosen Ciphertext
Attacks. 22nd ACM Symposium on Theory of Computing (STOC), ACM, pp. 427–437, 1990.

[34] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. 10th ACM Symposium
on Principles of Distributed Computing (PODC), ACM, pp. 51–59, 1991.

[35] C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen
Ciphertext attack. Advances in Cryptology — Crypto ’91, LNCS vol. 576, Springer-Verlag, pp.
433–444, 1992.

[36] J. Rompel. One-Way Functions are Necessary and Sufficient for Secure Signatures. 22nd ACM
Symposium on Theory of Computing (STOC), ACM, pp. 387–394, 1990.

[37] A. Sahai. Non-Malleable Non-Interactive Zero-Knowledge and Adaptive Chosen-Ciphertext
Security. 40th IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, pp.
543–553, 1999.

[38] A. Shamir. How to Share a Secret. Comm. of the ACM 22(11): 612–613 (1979).

23



A Basing NIZK on the (Computational) BDH Assumption

In this section we show two results culminating in a construction of an NIZK proof system (for all
of NP) in the common reference string model (see footnote 5) based on the computational BDH
assumption. Recall that this can then be used to achieve chosen-ciphertext security for our BTE
scheme in the standard model.

First, we formally define a new primitive which we call a publicly-verifiable trapdoor predicate
(first suggested in [18]), and show that the computational BDH assumption can be used to construct
such a primitive. This new primitive may be viewed as a generalization of trapdoor permutations,
and indeed we argue that the construction of an NIZK proof system based on trapdoor permutations
given by Feige-Lapidot-Shamir [19] (in the common random string model) can in fact be based on
publicly-verifiable trapdoor permutations in the common reference string model. Finally, we note
that the publicly-verifiable trapdoor predicate which arises naturally from the computational BDH
assumption is sufficient for NIZK in the context of CCA2-secure encryption (see discussion below).

We begin with a definition of publicly-verifiable trapdoor predicates. As noted above, these may
be viewed as generalizing the notion of trapdoor permutations. Somewhat informally, we replace
the requirements that (1) the domain of the permutation π is efficiently sampleable and that (2) π is
efficiently computable, by the (weaker) requirements that (1) it is possible to efficiently sample pairs
(x, π(x)) uniformly at random and that (2) given a pair (x, y) it is possible to efficiently determine
whether or not y = π(x). The formal definition we give here is patterned after the definition
of trapdoor permutations [22, Definition 2.4.5]. Below we let Ī ⊆ {0, 1}∗ be an index set, and
corresponding to each index i ∈ Ī we associate a domain Di and a predicate fi : Di ×Di → {0, 1}.
(Informally, fi indicates whether or not the pair (x, y) is of the appropriate form.)

Definition 9 Let F = {fi : i ∈ Ī} be a collection of functions fi : Di ×Di → {0, 1} such that for
all i ∈ Ī and y ∈ Di, there is a unique x for which fi(x, y) = 1. Collection F is a publicly-verifiable
trapdoor predicate if there exist four ppt algorithms I,D, F, F−1 such that:

• Index and trapdoor selection: For all k we have I(1k) ∈ Ī × {0, 1}∗.
• Uniform sampling of valid predicates: For all i ∈ Ī we have

– If (x, y) ← D(i) then fi(x, y) = 1.

– The distribution {(x, y) ← D(i) : y} is exactly the uniform distribution over Di.

• Efficient predicate evaluation: For all i ∈ Ī and all (x, y) ∈ Di ×Di, F (i, x, y) = fi(x, y).

• Hard to find a valid “match”: For all ppt algorithms A the following is negligible in k:

Pr[(i, td) ← I(1k); (x, y) ← D(i) : A(1k, i, y) = x].

• Easy to find a valid “match” with the trapdoor : For all k, any pair (i, td) output by I(1k),
and any y ∈ Di we have fi(F−1(td, y), y) = 1.

♦
It is not hard to see that a BDH parameter generator IG satisfying the computational BDH

assumption (see Section 2.1) gives rise to a publicly-verifiable trapdoor predicate. Informally,
this predicate arises because the computational Diffie-Hellman problem in G1 is “hard” while the
decisional Diffie-Hellman problem in G1 is “easy” (see [28]). Specifically, having the index include

24



the output of IG and a pair of random elements P, Q ∈ G1 (and letting the output of IG be
implicit), we define the predicate as fP,Q(R1, R2) = 1 iff logP R1 = logQ R2. Now, verifying the
equality is just an instance of the decisional Diffie-Hellman problem, while computing R1 from P, Q,
and R2 requires solving the computational Diffie-Hellman problem. On the other hand, knowing
the trapdoor (i.e., logP Q) makes this last problem easy. In more detail:

• I(1k) runs IG(1k) to obtain (G1,G2, ê). Then, it chooses random P ∈ G1 and random
α ∈ Z∗q (recall that q is the order of G1,G2). It sets Q = αP and outputs the index i =
(G1,G2, ê, P,Q) and the trapdoor α.

• D(i) chooses random β ∈ Zq and outputs (βP, βQ).

• F (i, R1, R2) (with R1, R2 ∈ G1) outputs 1 iff ê(P,R2) = ê(Q,R1).

• F−1(α, R2) outputs α−1R2.

It is immediate from the discussion earlier that the above forms a publicly-verifiable trapdoor pred-
icate if IG satisfies the computational BDH assumption (since the computational BDH assumption
for IG implies that the computational Diffie-Hellman problem in G1 is hard).

It is furthermore not difficult to see (following, e.g., Section 4.10.2 of [22]) that publicly-verifiable
trapdoor predicates satisfying some additional assumptions are sufficient to implement the “hidden-
bits paradigm” [22, Definition 4.10.3] (and hence NIZK) in the common random string model. These
additional assumptions, informally, relate to:

1. The ability to efficiently recognize elements of the index set Ī, or to prove that a given i is
indeed in Ī (see [7]).

2. The existence of a sampling algorithm D′ which, on input i ∈ Ī and random coins ω, outputs
a uniformly-distributed element y ∈ Di and furthermore has the following property: for all
ppt algorithms A the following is negligible in k:

Pr[(i, td) ← I(1k);ω ← {0, 1}∗; y ← D′(i; ω);x ← A(1k, i, y, ω) : fi(x, y) = 1];

i.e., it is hard to find a valid “match” even given the random coins of D′. (Trapdoor per-
mutations satisfying a notion analogous to the above are called “enhanced.” The reader is
referred to Appendix C.1 of [23], which corrects Section 4.10.2 of [22], for discussion.)

Although these assumptions seem plausible for BDH parameter generators used in practice, we
do not require these assumptions for our desired application to CCA2 security as discussed in
Section 4.3. In particular, since for our desired application the receiver — and not a third party —
establishes the “public parameters,” NIZK in the common reference string model (as opposed to the
common random string model) is sufficient. This enables a number of simplifications. In particular,
the receiver can simply generate parameters (G1,G2, ê, P ) and publish these values as part of its
public key along with a sufficiently-long sequence R1, . . . , Rn of randomly-generated values in G1

which will serve as the common reference string. When proving a statement, a sender chooses
random α ∈ Z∗q , computes Q = αP , and sends Q, thereby defining an index i = (G1,G2, ê, P, Q)
for the publicly-verifiable trapdoor predicate introduced earlier. Note that since the sender has the
trapdoor α, he may indeed implement the “hidden-bits paradigm,” as desired.

25



B Proof of Theorem 3

The proof is a relatively straightforward adaptation of [20]. Given a ppt adversary A, we introduce
a sequence of games where the first game Game0 corresponds to the experiment of Definition 3 while
in the final game the view of A is independent of the bit b. For each pair of consecutive games in
the sequence, we argue that the difference between the probability that b′ = b in the first game and
the probability that b′ = b in the second game is negligible. Since there are only a constant number
of games, and the probability that b′ = b in the final game is exactly 1/2, this completes the proof.

Let p0 denote the probability that b′ = b in Game0, as described in Definition 3 (technically,
p0 is a function of the security parameter k but we do not explicitly write this). Let w∗ be the
“target” node chosen by A, let (M0,M1) denote the “challenge messages” submitted by A, and let
C∗ = 〈C∗

1 , C∗
2 〉 denote the “challenge ciphertext” received by A where:

C∗
1 = Enc(PK,w∗, σ∗;H(w∗, σ∗,Mb)) and C∗

2 = G(σ∗)⊕Mb,

for randomly-chosen σ∗ and b. Game1 is exactly the same as Game0 except that whenever A (after
receiving the challenge ciphertext) requests decryption of a ciphertext 〈C∗

1 , C2〉 by a node w, this
query is answered by ⊥. Let p1 denote the probability that b′ = b in Game1.

We claim that |p0 − p1| is negligible. To prove this we argue that, with all but negligible
probability, all decryption requests by A of the form considered above are answered by ⊥ in Game0

anyway. To see this, consider any request by A for node w to decrypt ciphertext 〈C∗
1 , C2〉. Note that

we must have (w, C2) 6= (w∗, C∗
2 ). Let σ

def= Dec(PK,w, SKw, C∗
1 ), and let M

def= G(σ)⊕C2. If w =
w∗ then σ = σ∗; but then C2 6= C∗

2 implies that M 6= Mb. In any case, then, we have (w, σ,M) 6=
(w∗, σ∗, Mb). Since BT E satisfies the “unique randomness” property (see Section 3.2), the only way
this decryption query will not be answered with ⊥ is in case H(w, σ,M) = H(w∗, σ∗,Mb). Since
the output length of H is super-logarithmic (this is implied by the SN-CPA security of BT E), the
probability that this occurs is negligible.7 Applying a union bound over all oracle queries of A
(specifically, A’s decryption queries, queries to H, and challenge query) proves the stated claim.

In Game2 we again modify the way decryption requests of A are handled. In particular, for all
decryption queries of A not covered by the rule stated above (namely, whenever A requests that a
node w decrypt ciphertext 〈C1, C2〉, and either this is before A has received the challenge ciphertext
or else C1 6= C∗

1 ) we proceed as follows: For each query H(wi, σi,Mi) made by A to its random
oracle H, with corresponding answer ri, we check whether: (1) wi = w; and (2) Enc(PK, w, σi; ri) =
C1. If there exists such a tuple (wi, σi, Mi) satisfying the above (we call this a “match”), then
this decryption query of A is answered by computing M ′ = G(σi) ⊕ C2 and outputting M ′ iff
Enc(PK, w, σi;H(w, σi,M

′)) = C1. Otherwise, the decryption query is answered with ⊥. Let p2

denote the probability that b′ = b in Game2.
We claim that |p2 − p1| is negligible. Clearly, whenever a “match” is found in Game2, the

corresponding decryption query of A is answered identically to how this query would be answered
in Game1. Thus we only need to argue that, with all but negligible probability, when a “match”
is not found in Game2 the decryption query would have been answered with ⊥ in Game1, anyway.
To see this, consider a request by A for node w to decrypt 〈C1, C2〉. Let σ = Dec(PK, w, SKw, C1)
(if σ =⊥ we are done, so assume otherwise), and let M = G(σ) ⊕ C2. By the unique randomness
property of BT E , there is at most one r for which C1 = Enc(PK, w, σ; r). Since no match was
found, it is either the case that A asked the query H(w, σ,M) but the response to this query was

7Without the unique randomness assumption, we would need to argue that the set of coins r for which C∗1 =
Enc(PK, w, σ; r) constitutes a negligible fraction of all possible random coins. While this seems easy to prove if we
assume security of the encryption scheme against non-uniform adversaries, it appears difficult to prove otherwise.

26



not r, or A did not ask this query. In the former case, the decryption query will be rejected, while
in the latter case it will be rejected with all but negligible probability. Applying a union bound as
before proves the stated claim.

In Game3, we let the second component of the challenge ciphertext (i.e., C∗
2 ) be a randomly

chosen string of the appropriate length. Let p3 denote the probability that b′ = b in Game3; clearly
p3 = 1/2. To complete the proof of the theorem, we thus only need to argue that |p3 − p2| is
negligible. Note that the only difference between the two games — from the point of view of A —
occurs in case A makes a query G(σ∗) (where σ∗ represents the random value used to construct the
challenge ciphertext). Let q denote the probability that A makes such a query. We claim that q
is negligible since BT E is secure in the sense of SN-CPA. Indeed, consider the following adversary
B(1k, 1`) attacking BT E in the sense of SN-CPA:

1. Run A(1k, 1`) to obtain a target node w∗. This same target node is output by B.

2. B obtains a public key PK and secret keys {SKw} as in Definition 2. B gives these to A.

3. B simulates random oracles H, G for A, and decryption queries of A are answered as in Game2.

4. When A queries challenge(M0,M1), B chooses σ0 uniformly at random and sets σ1 to be an
arbitrary constant (say, the all-0 string). B queries challenge(σ0, σ1) and receives a ciphertext
C∗

1 . Next, B chooses C∗
2 uniformly at random and gives 〈C∗

1 , C∗
2 〉 to A.

5. Decryption queries of A are again answered as in Game2.

6. Furthermore, if at any point A makes a query G(σ0) then B outputs “0” and stops. Otherwise,
if the experiment ends without A having made such a query, B outputs “1”.

Note that if C∗
1 is an encryption of σ0 then, from the point of view of A, the above experiment

is identical to games Game2/Game3 until the point in time (if any) that A queries G(σ0) (and
this occurs with probability q). On the other hand, if C∗

1 is an encryption of σ1 then A has no
information about σ0 and hence the probability that A queries G(σ0) is some negligible quantity
negl (recall that |σ0| = k). Thus, the advantage of B (in attacking BT E in the sense of SN-CPA) is

∣∣∣∣
q

2
+

1− negl

2
− 1

2

∣∣∣∣ =
∣∣∣∣
q − negl

2

∣∣∣∣ ,

and so q must be negligible, as desired. This completes the proof of Theorem 3.

27


