
Predicate Encryption Supporting Disjunctions,

Polynomial Equations, and Inner Products

Jonathan Katz∗ Amit Sahai† Brent Waters‡

Abstract

Predicate encryption is a new paradigm for public-key encryption that generalizes identity-
based encryption and more. In predicate encryption, secret keys correspond to predicates and
ciphertexts are associated with attributes; the secret key SKf corresponding to a predicate f can
be used to decrypt a ciphertext associated with attribute I if and only if f(I) = 1. Constructions
of such schemes are currently known only for certain classes of predicates.

We construct a scheme for predicates corresponding to the evaluation of inner products
over ZN (for some large integer N). This, in turn, enables constructions in which predicates
correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulae, thresholds, and
more. Besides serving as a significant step forward in the theory of predicate encryption, our
results lead to a number of applications that are interesting in their own right.

1 Introduction

Traditional public-key encryption is coarse grained: a sender encrypts a message M with respect to
a public key PK, and only the owner of the (unique) secret key associated with PK can decrypt the
resulting ciphertext and recover the message. These straightforward semantics suffice for point-to-
point communication, where encrypted data is intended for one particular recipient who is known
in advance to the sender. In other settings, however, the sender may instead want to define a
policy determining who is allowed to recover the encrypted data. For example, classified data
might be associated with certain keywords; this data should be accessible both to users who are
allowed to read all classified information, as well as to users allowed to read information associated
with the particular keywords in question. Or, perhaps a patient’s records should be accessible
only to physicians who have treated that patient in the past. In other applications, it may be
sufficient to detect only whether a certain predicate is satisfied; for example, an email firewall should
potentially be able to evaluate whether an encrypted email satisfies certain attributes (so that it
can be forwarded appropriately), without learning anything else about the encrypted message.

∗Dept. of Computer Science, University of Maryland. Email: jkatz@cs.umd.edu. Research supported in part
by NSF CAREER award #0447075 and the US Army Research Laboratory and the UK Ministry of Defence under
agreement number W911NF-06-3-0001.

†Computer Science Department, UCLA. Email: sahai@cs.ucla.edu. Research supported in part by NSF
grants #0205594, #0456717, #0627781, and #0716389, a subgrant from SRI as part of the Army Cyber-TA program,
an equipment grant from Intel, an Okawa Research Award, and an Alfred P. Sloan Foundation Research Fellowship.

‡Dept. of Computer Science, University of Texas at Austin. Email: bwaters@cs.utexas.edu. Portions of this
work were done while the author was at SRI International.

1

Applications such as those sketched above require new cryptographic mechanisms that provide
more fine-grained control over access to encrypted data. Predicate encryption offers one such tool.
At a high level (formal definitions are given in Section 2), secret keys in a predicate encryption
scheme correspond to predicates (i.e., boolean functions) in some class F , and a sender associates
a ciphertext with an attribute from a set Σ; a ciphertext associated with the attribute I ∈ Σ can
be decrypted by a secret key SKf corresponding to the predicate f ∈ F if and only if f(I) = 1.

The “basic” level of security achieved by such schemes guarantees, informally, that a ciphertext
associated with attribute I hides all information about the underlying message unless one is in
possession of a secret key giving the explicit ability to decrypt. That is, if an adversary A holds
keys SKf1 , . . . , SKf`

, then A learns nothing about the message if f1(I) = · · · = f`(I) = 0. We
refer to this security notion as payload hiding. A stronger notion of security that we call attribute
hiding requires that the ciphertext hides the message as above, and additionally requires that the
ciphertext hides all information about the associated attribute I except that which is explicitly
leaked by the keys in one’s possession. That is, an adversary holding secret keys as above learns
only f1(I), . . . , f`(I) (and the message, in case one of these evaluates to 1), but learns nothing else
about I. See Section 2 for formal definitions.

Much prior work can be cast in the framework of predicate encryption. Identity-based encryp-
tion (IBE) [32, 11, 19, 18, 5, 6, 36] can be viewed as predicate encryption for the class of equality
tests; the standard notion of security for IBE [11, 18] corresponds to payload hiding, while anony-
mous IBE [10, 1, 16, 22] corresponds to the stronger notion of attribute hiding. Forward-secure
public-key encryption [18] can be viewed as predicate encryption for the class of greater-than predi-
cates. Attribute-based encryption schemes [31, 23, 4, 30] and schemes supporting range queries [34]
can also be cast in the framework of predicate encryption. (In this case all the listed constructions
achieve payload hiding only.) Boneh and Waters [14] construct a predicate encryption scheme
that handles range queries as well as conjunctions of, e.g., equality tests; their scheme satisfies the
stronger notion of attribute hiding.

Other work introducing concepts related to the idea of predicate encryption includes [3, 2]. In
contrast to the present work, however, the threat model in those works does not consider collusion
among users holding different secret keys.

1.1 Our Results

An important research direction is to construct predicate encryption schemes for predicate classes
F that are as expressive as possible, with the ultimate goal being to handle all polynomial-time
predicates. In addition, it is of independent interest to explore constructions of attribute-hiding (in
contrast to payload-hiding) schemes. In this work, we make progress in both these directions.

The aim of our work is to construct attribute-hiding schemes handling disjunctions. Most
prior work (as surveyed above) yields only payload-hiding schemes, and existing techniques for
obtaining attribute hiding are limited to handling conjunctions. (Indeed, handling disjunctions was
left as an open question in [14].) On a technical level, this is because the underlying cryptographic
mechanism used in the schemes handling conjunctions is to pair components of the secret key with
corresponding components of the ciphertext and then multiply the intermediate results together; a
“cancelation” in the exponent occurs if everything “matches,” but a random group element results
if there is any “mismatch.” Thus, the holder of a non-matching secret key learns only that there
was a mismatch in at least one position, but does not learn the number of mismatches or their
locations (as required for attribute hiding). On the other hand, very different techniques seem

2

needed to support disjunctions since now a mismatch in a single position should not give a random
group element but must instead somehow result in a “cancelation” if there is a match in any other
position. (We stress that what makes this difficult when attribute hiding is desired is that we must
hide the position of a match, and only reveal the existence of a match in at least one position.)

As a stepping stone toward an attribute-hiding scheme handling disjunctions, we first focus on
predicates corresponding to the computation of inner products over ZN (for some large integer N).
Formally, we take Σ = Z`

N as our set of attributes, and take our class of predicates to be F =
{f~x | ~x ∈ Z`

N} where f~x(~y) = 1 iff 〈~x, ~y〉 = 0. (Here, 〈~x, ~y〉 denotes the standard inner product∑`
i=1 xi · yi mod N of two vectors ~x and ~y.) We construct a predicate encryption scheme for this F

without random oracles, based on two new assumptions in composite-order groups equipped with a
bilinear map. Our assumptions are non-interactive and of constant size, and can be shown to hold
in an extension of the generic-group model where a bilinear map is provided and composite-order
groups are allowed. A pessimistic interpretation of our results would be that we prove security
in the generic-group model, but we believe it is notable that we are able to distill our necessary
assumptions to ones that are compact and falsifiable.

Our construction uses new techniques, most prominently the fact that we work in a bilinear
group whose order is a product of three primes. (In follow-up work, Freeman [20] shows how to
modify our construction so that it works using groups of prime order. Okamoto and Takashima [29]
show a different construction that only achieves payload hiding.)

We view our main construction as a significant step toward increasing the expressiveness of
predicate encryption. Moreover, we show that any predicate encryption scheme supporting “inner-
product” predicates as described above can be used as a building block to construct predicates of
more general types:

• As an easy warm-up, we show that it implies (anonymous) identity-based encryption as well
as hidden-vector encryption [14]. As a consequence, our work implies all the results of [14].

• We can also construct predicate encryption schemes supporting polynomial evaluation. Here,
we take ZN as our set of attributes, and predicates correspond to polynomials over ZN of
some bounded degree; a predicate evaluates to 1 iff the corresponding polynomial evaluates
to 0 on the attribute in question. We can also extend this to include multi-variate polynomials
(in a bounded number of variables). A “dual” of this construction allows the attributes to be
polynomials, and the predicates to correspond to evaluation at a fixed point.

• Given the above, we can fairly easily support predicates that are disjunctions of other pred-
icates (e.g., equality), thus achieving our main goal. In the context of identity-based en-
cryption, this gives the ability to issue a secret key corresponding to a set S of identities
that enables decryption whenever a ciphertext is encrypted to any one of the identities in S
(without leaking which identity was actually used when encrypting).

• We show how to handle predicates corresponding to bounded-size DNF and CNF formulae.

• Working directly with our “inner-product” construction, we can derive a scheme supporting
threshold queries of the following form: Attributes are subsets of A = {1, . . . , `}, and pred-
icates take the form {fS,t | S ⊆ A} where fS,t(S′) = 1 iff |S ∩ S′| = t. This is useful in the
“fuzzy IBE” setting of Sahai and Waters [31], and improves on their work in that we achieve
attribute hiding (rather than only payload hiding) and handle exact thresholds.

We defer further discussion regarding the above until Section 5.

3

1.2 Subsequent Work

Our inner-product scheme is proven secure in the “selective” security model [18] where the adversary
is required to output the “challenge attributes” in advance, before the public key is generated. An
important question left open by our work is to construct an inner-product scheme secure under an
“adaptive” definition where the adversary may decide on the challenge attributes after observing
the public key and obtaining some set of secret keys. Recent work of Lewko et al. [26] makes partial
progress on this question by giving a construction that is secure given an additional restriction on
the keys the adversary is allowed to obtain: specifically, the adversary is only allowed to obtain
keys whose inner product is nonzero with respect to both challenge attributes. Unfortunately, this
restriction precludes our main motivating application of handling disjunctions.

Since our work, various extensions and generalizations of inner-product predicate encryption
have been considered. Shi, Shen, and Waters [33] explored a symmetric-key variant of inner-
product encryption in relation to a new definition of security (that cannot be achieved in the
public-key setting) where secret keys should not leak information about the predicates to which they
correspond. Okamoto and Takashima have investigated hierarchical inner-product encryption [28]
as well as a combination of inner-product encryption and attribute-based encryption [29].

Boneh, Sahai, and Waters have also proposed a generalization of predicate encryption called
functional encryption [13].

2 Definitions

We provide formal definitions, following [14], for the syntax of predicate encryption and the security
properties discussed informally in the introduction. Throughout this section, we consider the
general case where Σ denotes an arbitrary set of attributes and F denotes an arbitrary set of
predicates over Σ. Formally, both Σ and F may depend on the security parameter and/or the master
public parameters (and, indeed, this will be the case in our main constructions); for simplicity, we
leave this dependence implicit. We let ppt stand for “probabilistic polynomial time.”

Definition 2.1. A predicate encryption scheme for the class of predicates F over the set of attributes
Σ consists of four (randomized) ppt algorithms Setup,Enc, GenKey, Dec such that:

• Setup takes as input the security parameter 1n and outputs a (master) public key PK and a
(master) secret key SK.

• Enc takes as input the public key PK, an attribute I ∈ Σ, and a message M in some
associated message space. It returns a ciphertext C. We write this as C ← EncPK(I, M).

• GenKey takes as input the master secret key SK and a (description of a) predicate f ∈ F .
It outputs a key SKf .

• Dec takes as input a secret key SKf and a ciphertext C. It outputs either a message M or
the distinguished symbol ⊥.

For correctness, we require that for all n, all (PK, SK) generated by Setup(1n), all f ∈ F , any key
SKf ← GenKeySK(f), and all I ∈ Σ:

• If f(I) = 1 then DecSKf
(EncPK(I,M)) = M .

• If f(I) = 0 then DecSKf
(EncPK(I,M)) =⊥ with all but negligible probability.

4

A useful variant of the above is a predicate-only scheme. Here, Enc takes only an attribute I (and
no message), and the correctness requirement is that DecSKf

(EncPK(I)) = f(I) except possibly
with negligible probability. One can further relax the correctness requirement (in either case) so
that correctness is required to hold only in a computational sense; namely, that it is hard to find f
and I for which DecSKf

(EncPK(I)) 6= f(I). Our schemes satisfy this notion of correctness.
Our definition of attribute-hiding security corresponds to the notion described informally earlier.

An adversary may request keys corresponding to the predicates f1, . . . , f`, and is given either
EncPK(I0,M0) or EncPK(I1,M1) for attributes I0, I1 such that fi(I0) = fi(I1) for all i. Furthermore,
if M0 6= M1 then it is required that fi(I0) = fi(I1) = 0 for all i. The goal of the adversary is to
determine which attribute/message pair was encrypted, and the stated conditions ensure that this
is not trivial. We use the “selective” notion of security introduced in [18], where I0, I1 must be
chosen by the adversary in advance. (Observe that when specialized to the case when F consists of
equality tests on strings, the definition corresponds to anonymous IBE with selective-ID security.)
Our definition corresponds to security against chosen-plaintext attacks, and we do not consider
chosen-ciphertext attacks in this work.

Definition 2.2. A predicate encryption scheme with respect to F and Σ is attribute hiding if for
all ppt adversaries A, the advantage of A in the following experiment is negligible in the security
parameter n:

1. A(1n) outputs I0, I1 ∈ Σ.

2. Setup(1n) is run to generate PK and SK, and the adversary is given PK.

3. A may adaptively request keys for any predicates f1, . . . , f` ∈ F subject to the restriction that
fi(I0) = fi(I1) for all i. In response, A is given the corresponding keys SKfi

← GenKeySK(fi).

4. A outputs two equal-length messages M0,M1. If there is an i for which fi(I0) = fi(I1) = 1,
then it is required that M0 = M1. A random bit b is chosen, and A is given the ciphertext
C ← EncPK(Ib,Mb).

5. The adversary may continue to request keys for additional predicates, subject to the same
restrictions as before.

6. A outputs a bit b′, and succeeds if b′ = b.
The advantage of A is the absolute value of the difference between its success probability and 1/2.

For predicate-only encryption schemes, attribute hiding is defined by simply omitting the messages
in the above experiment. Payload hiding, a strictly weaker notion of security, is defined by forcing
I0 = I1 = I in the above experiment (in which case A has advantage 0 if fi(I) = 1 for any i).

3 Background on Pairings and Complexity Assumptions

We assume some familiarity with bilinear maps as used, e.g., in [24, 25, 11], though our treatment
will be self-contained. We focus specifically on bilinear groups of composite order, first used in
cryptographic applications by [12]. In contrast to all prior work using composite-order bilinear
groups, however, we use groups whose order N is a product of three (distinct) primes.

All groups are written multiplicatively with identity element 1. Let G be an algorithm that
takes as input a security parameter 1n and outputs a tuple (p, q, r,G,GT , ê) where p, q, r are distinct
primes, G and GT are two cyclic groups of order N = pqr, and ê : G×G→ GT is a non-degenerate

5

bilinear map: i.e., for all u, v ∈ G and all a, b ∈ Z we have ê(ua, vb) = ê(u, v)ab, and if g generates G
then ê(g, g) generates GT . We assume multiplication in G and GT , as well as the bilinear map ê,
are all computable in time polynomial in n. Furthermore, we assume that the descriptions of G
and GT include generators of G and GT , respectively. An algorithm G with the required properties
can be based on supersingular elliptic curves with the modified Weil or Tate pairing used for ê; we
refer to [11, 12, 21] for details.

We use the notation Gp,Gq,Gr to denote the subgroups of G having order p, q, and r, respec-
tively. In addition, let Gpq denote the subgroup of order pq, let Gpr denote the subgroup of order pr,
and let Gqr denote the subgroup of order qr. Note also that if g is a generator of G then the element
gpq is a generator of Gr, the element gpr is a generator of Gq, and the element gqr is a generator
of Gp. Furthermore, if hp ∈ Gp and hq ∈ Gq then

ê(hp, hq) = ê
(
(gqr)α1 , (gpr)α2

)
= ê

(
gα1 , grα2

)pqr
= 1,

where α1 = loggqr hp and α2 = loggpr hq. A similar rule holds whenever ê is applied to elements in
any two subgroups whose only intersection is the identity element.

3.1 Cryptographic Assumptions

We now state the assumptions we use to prove security of our construction. These assumptions are
new, but we prove in Appendix A that they hold in the generic-group model as long as finding a
non-trivial factor of N (the group order) is hard. We state our assumptions explicitly and highlight
that they are non-interactive (in contrast to, e.g., the LRSW assumption [17]) and of fixed size (in
contrast to, e.g., the q-SDH assumption [7]). Only Assumption 1 is needed for our main (predicate-
only) construction; Assumption 2 (in addition to Assumption 1) is used to construct a scheme with
better efficiency.

Assumption 1. Let G be as above. We say that G satisfies Assumption 1 if the advantage of any
ppt algorithm A in the following experiment is negligible in the security parameter n:

1. G(1n) is run to obtain (p, q, r,G,GT , ê). Set N = pqr, and let gp, gq, gr be generators of Gp,
Gq, and Gr, respectively.

2. Choose random Q1, Q2, Q3 ∈ Gq, random R1, R2, R3 ∈ Gr, random a, b, s ∈ Zp, and a random
bit c. Give to A the values (N,G,GT , ê) as well as

gp, gr, gqR1, gb
p, gb2

p , ga
pgq, gab

p Q1, gs
p, gbs

p Q2R2.

If c = 0 give A the value T = gb2s
p R3, while if c = 1 give A the value T = gb2s

p Q3R3.

3. A outputs a bit c′, and succeeds if c′ = c.
The advantage of A is the absolute value of the difference between its success probability and 1/2.

Assumption 2. Let G be as above. We say that G satisfies Assumption 2 if the advantage of any
ppt algorithm A in the following experiment is negligible in the security parameter n:

1. G(1n) is run to obtain (p, q, r,G,GT , ê). Set N = pqr, and let gp, gq, gr be generators of Gp,
Gq, and Gr, respectively.

6

2. Choose random h ∈ Gp and Q1, Q2 ∈ Gq, random s, γ ∈ Zp, and a random bit c. Give to A
the values (N,G,GT , ê) as well as

gp, gq, gr, h, gs
p, hsQ1, gγ

pQ2, ê(gp, h)γ .

If c = 0 then give A the value ê(gp, h)γs, while if c = 1 then give A a random element of GT .

3. A outputs a bit c′, and succeeds if c′ = c.
The advantage of A is the absolute value of the difference between its success probability and 1/2.

Assumption 1 can be viewed as variant of a subgroup-decision assumption (cf. [12]), insofar
as T is either an element of Gpr (with random Gr component) or an element of G (with random
Gq and Gr components) and we require that it be hard to distinguish between the two possibil-
ities. Assumption 2 is similar in spirit to the decisional bilinear Diffie-Hellman (decisional-BDH)
assumption [11] which in our context would be the assumption that, given gγ

p , gs
p, and h, it is hard

to distinguish ê(gp, h)γs from a random element of GT . The decisional-BDH problem becomes easy
given the additional information hs; in Assumption 2, however, gγ

p and hs are each “masked” by
(independent) random elements in Gq.

Both the above assumptions imply the hardness of finding any non-trivial factor of N . For
Assumption 2 this is immediate: ê(gp, h)γs has order p, whereas a random element of GT has
order N with all but negligible probability. For Assumption 1, ê(gb2s

p R3, ga
pgq) has order p whereas

ê(gb2s
p Q3R3, ga

pgq) has order pq (with all but negligible probability); thus, knowledge of p or q (and
hence pr) immediately gives a distinguisher. A similar argument applied to ê(gb2s

p R3, gqR1) and
ê(gb2s

p Q3R3, gqR1) implies a distinguisher if r is known.

4 A Predicate-Only Encryption Scheme

Our main construction is a predicate encryption scheme where the set of attributes is Σ = Z`
N , and

the class of predicates is F = {f~v | ~v ∈ Z`
N} with f~v(~x) = 1 iff 〈~v, ~x〉 = 0 mod N . Here, we present

a predicate-only version of the scheme based on Assumption 1. Note that any attribute-hiding,
predicate-only scheme can be used to encrypt arbitrary length messages in a bit-by-bit fashion: To
encrypt a message M using attribute ~x, first choose another vector ~x′ uniformly at random. Then,
for i = 1, . . . , |M |, if Mi = 1 encrypt using attribute ~x, and if Mi = 0 encrypt using attribute ~x′.
Since 〈~v, ~x′〉 has only a negligible probability of being zero for any ~v, this will achieve the desired
functionality and security. (Note that here we rely on attribute hiding, so that the adversary does
not learn ~x′ upon seeing the ciphertext.) We show in Appendix B how the scheme below can
be generalized to give a more efficient predicate encryption scheme that “natively” handles long
messages, using both Assumptions 1 and 2.

4.1 Intuition for the Construction

In our construction, each ciphertext has associated with it a (secret) vector ~x, and each secret key
corresponds to a vector ~v. The decryption procedure must check whether ~x · ~v = 0 mod N , and
reveal nothing about ~x but whether this is true. To do this, we will make use of a bilinear group G
whose order N is the product of three primes p, q, and r. Let Gp, Gq, and Gr denote the subgroups
of G having order p, q, and r, respectively. We will (informally) assume, as in [12], that a random

7

element in any of these subgroups is indistinguishable from a random element of G.1 Thus, we can
use random elements from one subgroup to “mask” elements from another subgroup.

At a high level, we will use these subgroups as follows: Gq will be used to encode the vectors
~x and ~v in the ciphertext and secret keys, respectively. (This will be done, e.g., in the case of
ciphertexts by putting each element of the vector ~x = (x1, . . . , x`) in the exponent of its own
component of the ciphertext.) Computation of the inner product 〈~v, ~x〉 will be done in Gq, in the
exponent, using the bilinear map. The subgroup Gp will be used to encode an equation (again
in the exponent) that evaluates to zero when decryption is done properly. This subgroup is used
to prevent an adversary from improperly “manipulating” the computation (by, e.g., changing the
order of components of the ciphertext or secret key, raising these components to some power, etc.).
On an intuitive level, if the adversary tries to manipulate the computation in any way, then the
computation occurring in the Gp subgroup will no longer yield the identity (i.e., will no longer
yield 0 in the exponent), but will instead have the effect of “masking” the correct answer with a
random element of Gp (which will invalidate the entire computation). Elements in Gr are used for
“general masking” of terms in other subgroups; i.e., random elements of Gr are multiplied with
various components of the ciphertext (and secret key) in order to “hide” information that might
be present in the Gp or Gq subgroups.

4.2 A Predicate-Only Encryption Scheme

We now describe our scheme in detail. Below, we assume the length ` of vectors is fixed for
simplicity, but it could also be taken as any polynomial function of the security parameter n.

Setup(1n). The setup algorithm first runs G(1n) to obtain (p, q, r,G,GT , ê). Next, it computes
gp, gq, and gr as generators of Gp,Gq, and Gr, respectively. It then chooses R1,i, R2,i ∈ Gr and
h1,i, h2,i ∈ Gp uniformly at random for i = 1 to `, and R0 ∈ Gr uniformly at random. The public
parameters include (N = pqr,G,GT , ê) along with:

PK =
(
gp, gr, Q = gq ·R0, {H1,i = h1,i ·R1,i, H2,i = h2,i ·R2,i}`

i=1

)
.

The master secret key SK is
(
p, q, r, gq, {h1,i, h2,i}`

i=1

)
.

EncPK(~x). Let ~x = (x1, . . . , x`) with xi ∈ ZN . This algorithm chooses random s, α, β ∈ ZN and
R3,i, R4,i ∈ Gr for i = 1 to `. (Note that a random element R ∈ Gr can be sampled, without the
factorization of N , by choosing random δ ∈ ZN and setting R = gδ

r .) It outputs the ciphertext

C =
(

C0 = gs
p,

{
C1,i = Hs

1,i ·Qα·xi ·R3,i, C2,i = Hs
2,i ·Qβ·xi ·R4,i

}`

i=1

)
.

GenKeySK(~v). Let ~v = (v1, . . . , v`), and recall SK =
(
p, q, r, gq, {h1,i, h2,i}`

i=1

)
. This algorithm

chooses random r1,i, r2,i ∈ Zp for i = 1 to `, random R5 ∈ Gr, random f1, f2 ∈ Zq, and random
Q6 ∈ Gq. It then outputs

SK~v =

(
K = R5 ·Q6 ·

∏̀

i=1

h
−r1,i

1,i · h−r2,i

2,i ,
{

K1,i = g
r1,i
p · gf1·vi

q , K2,i = g
r2,i
p · gf2·vi

q

}`

i=1

)
.

1This is only for intuition. Our actual computational assumptions are given in Section 3.

8

DecSK~v
(C). Let C =

(
C0, {C1,i, C2,i}`

i=1

)
and SK~v =

(
K, {K1,i, K2,i}`

i=1

)
be as above. The

decryption algorithm outputs 1 iff

ê(C0,K) ·
∏̀

i=1

ê(C1,i,K1,i) · ê(C2,i, K2,i) = 1,

and outputs 0 otherwise.

Correctness. To see that correctness holds, let C and SK~v be as above. Then

ê(C0,K) ·
∏̀

i=1

ê(C1,i,K1,i) · ê(C2,i,K2,i)

= ê

(
gs
p, R5Q6

∏̀

i=1

h
−r1,i

1,i h
−r2,i

2,i

)
·
∏̀

i=1

ê
(
Hs

1,iQ
α·xiR3,i, g

r1,i
p gf1·vi

q

)
· ê

(
Hs

2,iQ
β·xiR4,i, g

r2,i
p gf2·vi

q

)

= ê

(
gs
p,

∏̀

i=1

h
−r1,i

1,i h
−r2,i

2,i

)
·
∏̀

i=1

ê
(
hs

1,i · gα·xi
q , g

r1,i
p gf1·vi

q

)
· ê

(
hs

2,i · gβ·xi
q , g

r2,i
p gf2·vi

q

)

=
∏̀

i=1

ê(gq, gq)(αf1+βf2)xivi = ê(gq, gq)(αf1+βf2 mod q)·〈~x,~v〉,

where α, β are random in ZN and f1, f2 are random in Zq. If 〈~x,~v〉 = 0 mod N , then the above
evaluates to 1. If 〈~x,~v〉 6= 0 mod N there are two cases: if 〈~x,~v〉 6= 0 mod q then with all but
negligible probability (over choice of α, β, f1, f2) the above evaluates to an element other than the
identity. The other possibility is that 〈~x,~v〉 = 0 mod q, in which case the above would always
evaluate to 1; however, computing gcd(〈~x,~v〉 , N) would then give a non-trivial factor of N and
so this occurs with only negligible probability (recall, our assumptions imply hardness of finding a
non-trivial factor of N).

There may appear to be some redundancy in our construction; for instance, the C1,i and C2,i

components play identical roles. In fact we can view the encryption scheme as consisting of two
parallel sub-systems linked via the C0 component (and the K component of the secret key). A
natural question is whether this redundancy can be eliminated to achieve better performance.
While such a construction appears to be secure, our current proof relies in an essential way on
having these two parallel sub-systems.

4.3 Proof Intuition

The most challenging aspect to providing a proof of our scheme arises from the disjunctive capabil-
ities of our system. In the previous attribute-hiding conjunctive scheme [14], security was proved
via a sequence of hybrid games in which the “challenge ciphertext” associated with a vector ~x
was changed component-by-component to a challenge ciphertext associated with a vector ~y. The
adversary in that case was only allowed to request secret keys that did not match either of ~x or ~y,
and so in every hybrid game it was the case that the adversary’s secret keys would not “match” the
challenge ciphertext. Thus, the hybrids could be handled in a relatively straightforward manner.

In our proof the adversary will again try to determine which of two vectors ~x or ~y is associated
with the challenge ciphertext. However, in our case the adversary may legally request a secret key

9

SK~v that “matches” both ~x and ~y, i.e., the adversary may request a secret key SK~v for which both
〈~x,~v〉 = 0 and 〈~y,~v〉 = 0. This means that we cannot use a sequence of hybrid games as outlined
above. To see why, note that if we change one component at a time in the challenge ciphertext,
then the hybrid vector used in an intermediate step will likely not “match” SK~v (i.e., will not be
orthogonal to ~v), and the adversary can detect this just by running the legal decryption procedure.

Therefore, we need to use a sequence of hybrid games in which an entire vector used in the
challenge ciphertext is changed in one step, instead of using a sequence of hybrid games where
the vector is changed component-by-component. To do this we take advantage of the fact that
our encryption scheme contains two parallel “sub-systems” corresponding to the {C1,i} and {C2,i}
components of the ciphertext, respectively. In our proof we will use hybrid games where a challenge
ciphertext is encrypted with respect to one vector in the first sub-system and a different vector
in the second sub-system. (Note that such a ciphertext is ill-formed, since any honestly generated
ciphertext will always use the same vector in each sub-system.) Let (~a,~b) denote the experiment
where the challenge ciphertext is encrypted using vector ~a in the first sub-system and ~b in the
second sub-system. To prove indistinguishability between the case when the challenge ciphertext
is associated with ~x (which corresponds to (~x, ~x)) and the case when the challenge ciphertext is
associated with ~y (which corresponds to (~y, ~y)), we use a sequence of intermediate hybrid games
(~x,~0), (~x, ~y), (~0, ~y), showing indistinguishability in each case. That is, we show

(~x, ~x) ≈ (~x,~0) ≈ (~x, ~y) ≈ (~0, ~y) ≈ (~y, ~y),

proving our desired result. (We use the 0-vector since it is orthogonal to everything.) Using
this structure in our proof allows us to use a simulator that will essentially work in one sub-
system without “knowing” what is happening in the other one. The simulator embeds a “subgroup
decision-like” challenge into the challenge ciphertext for each experiment. The structure of the
challenge will determine whether a sub-system encrypts the given vector or the zero vector. Details
of our proof and further discussion are given in the following section.

4.4 Proof of Security

This section is devoted to a proof of the following theorem:

Theorem 4.1. If G satisfies Assumption 1 then the scheme described in Section 4 is an attribute-
hiding, predicate-only encryption scheme.

For convenience, we re-state Definition 2.2 in the particular setting of our main construction,
which is a predicate-only scheme where the set of attributes is Σ = Z`

N and the class of predicates
corresponds to inner products, namely, F = {f~x | ~x ∈ Z`

N} with f~x(~y) = 1 iff 〈~x, ~y〉 = 0 mod N .
The particular predicate we use requires a slight change in the definition, since the set of attributes
depends on the master public key (but in Definition 2.2 the adversary is supposed to output I0, I1

before receiving the public key). We adapt the definition in the natural way by giving A the
modulus N first, then requiring it to output I0, I1 before being given the rest of the public key.

Definition 4.2. A predicate-only encryption scheme for Σ,F as above is attribute hiding if for
all ppt adversaries A, the advantage of A in the following experiment is negligible in the security
parameter n:

1. Setup(1n) is run to generate keys PK, SK. This defines a value N which is given to A.

10

2. A outputs ~x, ~y ∈ Z`
N , and is then given PK.

3. A may adaptively request keys corresponding to the vectors ~v1, . . . ∈ Zn
N , subject to the

restriction that, for all i, 〈~vi, ~x〉 = 0 mod N if and only if 〈~vi, ~y〉 = 0 mod N . In response, A
is given the corresponding keys SK~vi

← GenKeySK(f~vi
).

4. A random bit b is chosen. If b = 0 then A is given C ← EncPK(~x), and if b = 1 then A is
given C ← EncPK(~y).

5. The adversary may continue to request keys for additional vectors, subject to the same
restriction as before.

6. A outputs a bit b′, and succeeds if b′ = b.
The advantage of A is the absolute value of the difference between its success probability and 1/2.

We establish the theorem using a sequence of games, defined as follows:

Game1: The challenge ciphertext is generated as a proper encryption using ~x. (Recall from
Definition 4.2 that we let ~x, ~y denote the two vectors output by the adversary.) That is, we
choose random s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(

C0 = gs
p,

{
C1,i = Hs

1,iQ
αxiR3,i, C2,i = Hs

2,iQ
βxiR4,i

}`

i=1

)
.

Game2: We now generate the {C2,i} components as if encryption were done using ~0. That is, we
choose random s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C0 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,i R4,i

}`

i=1

)
.

Game3: We now generate the {C2,i} components using vector ~y. That is, we choose random
s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(

C0 = gs
p,

{
C1,i = Hs

1,iQ
αxiR3,i, C2,i = Hs

2,iQ
βyiR4,i

}`

i=1

)
.

Game4: This game is defined analogously to Game2, though here it is the {Ci,1} components that
are generated using ~0. That is, we choose random s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr

and compute the ciphertext as

C =
(

C0 = gs
p,

{
C1,i = Hs

1,i R3,i, C2,i = Hs
2,iQ

βyiR4,i

}`

i=1

)
.

Game5: This game is analogous to Game1, though now the challenge ciphertext is a proper encryp-
tion using ~y. I.e., we choose random s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr and compute
the ciphertext as

C =
(

C0 = gs
p,

{
C1,i = Hs

1,iQ
αyiR3,i, C2,i = Hs

2,iQ
βyiR4,i

}`

i=1

)
.

11

The proof of the theorem is concluded once we show that the adversary cannot distinguish between
Gamei and Gamei+1 for each i.

As discussed in Section 4.3, we do not know how to proceed directly from a game in which the
challenge ciphertext is generated as a proper encryption using ~x, to a game in which the challenge
ciphertext is generated as a proper encryption using ~y. (Indeed, this is the reason our construction
uses two “sub-systems”.) That is why our proof proceeds via the intermediate Game3 where half
the challenge ciphertext corresponds to an encryption using ~x and the other half corresponds to
an encryption using ~y. Intermediate games Game2 and Game4 are used to simplify the proof; it
helps when part of the ciphertext corresponds to an encryption using ~0 since this is orthogonal to
everything.

The main difficulty in our proofs will be to answer queries for decryption keys. In considering
the indistinguishability of Game1 and Game2 (and, symmetrically, Game4 and Game5), we will
actually be able to construct all decryption keys (i.e., even keys that would allow the adversary
to distinguish an encryption relative to ~x from an encryption relative to ~y). In essence, we will be
showing that even such keys cannot be used to distinguish a well-formed encryption of ~x (or ~y)
from a badly-formed one.

On the other hand, in considering the indistinguishability of Game2 and Game3 (and, symmet-
rically, Game3 and Game4) we will not be able to construct all decryption keys. Instead, we will
deal separately with the problems of (1) providing keys for vectors ~v with 〈~v, ~x〉 = 0 = 〈~v, ~y〉 and
(2) providing keys for vectors ~v with 〈~v, ~x〉 6= 0 6= 〈~v, ~y〉.

4.4.1 Indistinguishability of Game1 and Game2

Fix an adversary A taking part in the security game of Definition 4.2. We describe a simulator who
is given (N = pqr,G,GT , ê) along with gp, gr, gqR1, hp = gb

p, kp = gb2
p , ga

pgq, gab
p Q1, gs

p, gbs
p Q2R2,

and an element T = gb2s
p gξ

qR3 where ξ is either 0 or uniform in Zq (cf. Assumption 1).
Before describing the simulation in detail, we observe that the simulator can sample a random

element R ∈ Gr by choosing random δ ∈ ZN and setting R = gδ
r . Although there is no direct way

for the simulator to sample a random element of Gq (since gq is not provided to the simulator), it

is possible for the simulator to choose an independent random element QR ∈ Gqr
def= Gq × Gr by

choosing random δ1, δ2 ∈ ZN and setting QR = (gqR1)δ1 · gδ2
r . Henceforth, we simply describe the

simulator as sampling uniformly from Gr and Gqr with the understanding that such sampling is
done in this way.

Public parameters. The simulator begins by giving N to A, who outputs vectors ~x, ~y. The
simulator chooses random {w1,i, w2,i} ∈ ZN and random {R1,i, R2,i} ∈ Gr, includes (N,G,GT , ê)
in the public parameters, and sets the remaining values as follows:

PK =
(
gp, gr, gqR1,

{
H1,i = (hp)xig

w1,i
p R1,i, H2,i = (kp)xig

w2,i
p R2,i

}`

i=1

)
.

In doing so, the simulator is implicitly setting h1,i = hxi
p g

w1,i
p and h2,i = kxi

p g
w2,i
p . Note that PK

has the correct distribution.

Key derivation. We now describe how the simulator prepares the secret key corresponding to
the vector ~v = (v1, . . . , v`). We stress that although Definition 4.2 restricts the vectors ~v for which
the adversary is allowed to request secret keys, we do not rely on this restriction here. This is
because the purpose of this hybrid proof is to show that the adversary cannot distinguish between

12

properly formed encryptions of ~x and improperly formed encryptions (that are a combination of
an encryption of ~x and an encryption of ~0).

We begin with some intuition. We must construct the K1,i and K2,i components of the key. We
do not have access to gq, but we do have gqg

a
p and we will use this element here. This will give rise

to terms containing a in the exponent of gp. Note, however, that we will later have to construct the
K component of the key, whose purpose is to cancel out terms in the Gp subgroup. If 〈~v, ~x〉 6= 0,
then additional terms involving ab and ab2 appear in K. But we do not have access to gab2

p ; indeed,
if we did we could easily distinguish between Game1 and Game2. We deal with this problem by
adding a term to the K1,i components (using the gab

p Q1 term given as part of the challenge) that
will allow us to cancel out the ab2 terms that appear in K due to the K2,i components.

The simulator begins by choosing random f ′1, f
′
2, {r′1,i}, {r′2,i} ∈ ZN . In constructing the key,

implicitly the simulator will be setting

r1,i = r′1,i + vi · (af ′1 − abf ′2) (1)
r2,i = r′2,i + a f ′2 vi, (2)

as well as f1 = f ′1−d f ′2 and f2 = f ′2, where we let d = loggq
Q1. These values are each independently

and uniformly distributed in ZN , just as they would be in actual secret-key components.
Next, for all i the simulator computes:

K1,i =
(
ga
pgq

)f ′1vi ·
(
gab
p Q1

)−f ′2vi · gr′1,i
p

= g
(af ′1−abf ′2)·vi+r′1,i
p · g(f ′1−df ′2)·vi

q

and

K2,i =
(
ga
pgq

)f ′2vi · gr′2,i
p

= g
af ′2vi+r′2,i
p · gf ′2vi

q .

The simulator next constructs the K element of the secret key. Recall that h1,i = (gp)bxig
w1,i
p .

Therefore, the exponents in K will contain a term of the form
∑

i r1,ibxi. But because of how we
chose r1,i, we have

∑
i r1,ibxi = k(abf ′1 − ab2f2) +

∑
i r
′
1,ixi where k = 〈~v, ~x〉. A similar equation

holds for the terms arising from the h2,i parts of K, and allows the simulator to cancel out all the
ab2 terms that arise in K.

The simulator computes K as follows: Let k = 〈~v, ~x〉. The simulator chooses random QR ∈ Gqr

and computes

K = QR ·
(
gab
p Q1

)−k·f ′1

·
∏

i

(
ga
pgq

)−f ′1viw1,i−f ′2viw2,i ·
(
gab
p Q1

)f ′2viw1,i · g−w1,i·r′1,i−w2,i·r′2,i
p · h−xi·r′1,i

p · k−xi·r′2,i
p .

The simulator then gives the adversary SK~v =
(
K, {K1,i,K2,i}`

i=1

)
as the key.

To see formally that the K component has the correct distribution, let Kp, Kq, and Kr denote the
projections of K in Gp,Gq, and Gr, respectively. It is easy to see that Kq and Kr are independently

13

and uniformly distributed, as required. Furthermore,

Kp = g
−abkf ′1
p ·

∏

i

g
−af ′1viw1,i−af ′2viw2,i
p g

abf ′2viw1,i
p g

−w1,ir
′
1,i−w2,ir

′
2,i

p h
−xir

′
1,i

p k
−xir

′
2,i

p

= h
−akf ′1
p

∏

i

(
h
−xir

′
1,i

p g
−w1,ir

′
1,i

p g
−w1,ivi(af ′1−abf ′2)
p

)
·
(

k
−xir

′
2,i

p g
−w2,ir

′
2,i

p g
−w2,iaf ′2vi
p

)

=
∏

i

h
−axivif

′
1

p ·
(

h
−xir

′
1,i

p g
−w1,ir

′
1,i

p g
−w1,ivi(af ′1−abf ′2)
p

)
·
(
h

abxivif
′
2

p · h−abxivif
′
2

p

)

·
(

k
−xir

′
2,i

p g
−w2,ir

′
2,i

p g
−w2,iaf ′2vi
p

)
,

using the fact that k = 〈~x,~v〉 =
∑

i xi, vi. Using simple (but tedious) algebra, we obtain

Kp

=
∏

i

(
h
−xir

′
1,i

p g
−w1,ir

′
1,i

p h
−xivi·(af ′1−abf ′2)
p g

−w1,ivi(af ′1−abf ′2)
p

)
·
(

k
−xir

′
2,i

p g
−w2,ir

′
2,i

p k
−xiaf ′2vi
p g

−w2,iaf ′2vi
p

)

=
∏

i

(
hxi

p g
w1,i
p

)−r1,i
(
kxi

p g
w2,i
p

)−r2,i =
∏

i

h
−r1,i

1,i h
−r2,i

2,i

(using Eqs. (1) and (2)), and thus Kp (and hence K) has the correct distribution.

The challenge ciphertext. The challenge ciphertext is generated in a straightforward way as
follows. The simulator chooses {R7,i, R8,i} ∈ Gr at random, sets C0 equal to gs

p, and computes

C1,i =
(
gbs
p Q2R2

)xi · (gs
p)

w1,i ·R7,i

= hxis
p g

w1,is
p Qxi

2 R′
7,i

= (h1,i)sQxi
2 R′

7,i

C2,i = T xi · (gs
p)

w2,i ·R8,i

= (h2,i)s
(
gξ
q

)xi

R′
8,i ,

where {R′
7,i, R

′
8,i} are random elements of Gr whose exact values are unimportant.

Analysis. By examining the projections of the components of the challenge ciphertext in the groups
Gp, Gq, and Gr, it can be verified that when ξ is random the challenge ciphertext is distributed
exactly as in Game1, whereas if ξ = 0 the challenge ciphertext is distributed exactly as in Game2.
It follows that if A succeeds in distinguishing these two games then our simulator can use A to
break Assumption 1. Thus if Assumption 1 holds, these two games are indistinguishable.

4.4.2 Indistinguishability of Game2 and Game3

Fix again some adversary A taking part in the security game of Definition 4.2. We describe a
simulator who is given (N = pqr,G,GT , ê) along with the elements gp, gr, gqR1, hp = gb

p, kp =
gb2
p , ga

pgq, gab
p Q1, gs

p, gbs
p Q2R2, and an element T = gb2s

p gξ
qR3 where ξ is either 0 or uniform in Zq.

Recall that sampling uniform elements from Gr and Gqr can be done efficiently. The simulator
interacts with A as we now describe.

14

Public parameters. The simulator begins by giving N to A, who outputs vectors ~x, ~y. The
simulator chooses random {w1,i, w2,i} ∈ ZN and random {R1,i, R2,i} ∈ Gr, includes (N,G,GT , ê)
in the public parameters, and sets the rest of the master public key as follows:

PK =
(
gp, gr, gqR1,

{
H1,i = (hp)xig

w1,i
p R1,i H2,i = (kp)yig

w2,i
p R2,i

}`

i=1

)
.

In doing so, the simulator is implicitly setting h1,i = hxi
p g

w1,i
p and h2,i = kyi

p g
w2,i
p . Note that PK

has the appropriate distribution.

Key derivation. The adversary A may request secret keys corresponding to different vectors,
and we now describe how the simulator prepares the secret key corresponding to the vector ~v =
(v1, . . . , v`). Here, the simulator will only be able to produce the appropriate secret key when the
vector ~v satisfies the restriction imposed by Definition 4.2. We distinguish two cases, depending on
whether 〈~v, ~x〉 and 〈~v, ~y〉 are both zero or whether they are both nonzero.

Case 1. We first consider the case where 〈~v, ~x〉 = 0 = 〈~v, ~y〉. The simulator begins by choosing
random f1, f2, {r′1,1}, {r′2,1} ∈ ZN . Then for all i it computes

K1,i =
(
ga
pgq

)f1vi · (gp)r′1,i

= g
af1vi+r′1,i
p · gf1vi

q

K2,i =
(
ga
pgq

)f2vi · (gp)r′2,i

= g
af2vi+r′2,i
p · gf2vi

q .

Finally, the simulator chooses random QR ∈ Gqr and computes

K = QR ·
∏

i

(
ga
pgq

)−f1viw1,i−f2viw2,i · g−w1,i·r′1,i−w2,i·r′2,i
p · h−xi·r′1,i

p · k−yi·r′2,i
p .

The simulator then hands the adversary SK~v = (K, {K1,i,K2,i}) as the key.
To see that this key has the correct distribution, note that by construction of the {K1,i,K2,i}

the values f1, f2 are random; furthermore, the simulator implicity sets

r1,i = r′1,i + af1vi

r2,i = r′2,i + af2vi,

which are uniformly distributed as well. Looking at Kp, the projection of K in Gp (as in the proof
in the previous section), we see that

Kp =
∏

i

g
−af1viw1,i−af2viw2,i
p · g−w1,i·r′1,i−w2,i·r′2,i

p · h−xi·r′1,i
p · k−yi·r′2,i

p

=
∏

i

h−af1xivi
p · k−af2yivi

p · g−af1viw1,i−af2viw2,i
p · g−w1,i·r′1,i−w2,i·r′2,i

p · h−xi·r′1,i
p · k−yi·r′2,i

p ,

using the fact that
∏

i h
−af1xivi
p = h

−af1·
∑

i xivi
p = 1 =

∏
i k
−af2yivi
p (because 〈~v, ~x〉 = 0 = 〈~v, ~y〉).

Algebraic manipulation as in the previous section shows that Kp has the correct distribution.

15

Case 2. Here, we consider the case where 〈~v, ~x〉 = cx 6= 0 and 〈~v, ~y〉 = cy 6= 0. The simulator
begins by choosing random f ′1, f

′
2, {r′1,1}, {r′2,1} ∈ ZN . Next, for all i it computes

K1,i =
(
ga
pgq

)f ′1vi
(
gab
p Q1

)−cy ·f ′2vi · (gp)r′1,i

= g
(af ′1−abcyf ′2)·vi+r′1,i
p · g(f ′1−cydf ′2)·vi

q

K2,i =
(
ga
pgq

)cx·f ′2vi · (gp)r′2,i

= g
acxf ′2vi+r′2,i
p · gcx·f ′2vi

q ,

where we set d = loggq
Q1. Finally, the simulator chooses random QR ∈ Gqr and computes

K = QR · (gab
p Q1)−cxf ′1

·
∏

i

(
ga
pgq

)−f ′1viw1,i−f ′2cxviw2,i · (gab
p Q1)f ′2cyviw1,i · g−w1,i·r′1,i−w2,i·r′2,i

p · h−xi·r′1,i
p · k−yi·r′2,i

p .

The simulator then hands the key SK~v = (K, {K1,i,K2,i}) to the adversary.
To see that this key has the correct distribution, note that by construction of the {K1,i,K2,i}

the simulator implicity sets

r1,i = r′1,i + (af ′1 − cyabf ′2) · vi

r2,i = r′2,i + acxf ′2vi,

as well as f1 = f ′1− cy · df ′2 and f2 = cx · f ′2. It is clear that f1 and the {r1,i, r2,i} are independently
and uniformly distributed in ZN . The value f2 is also uniformly distributed in ZN as long as
gcd(cx, N) = 1. (If gcd(cx, N) 6= 1, then the adversary has found a non-trivial factor of N . This
occurs with negligible probability under Assumption 1.)

As for element K of the secret key, it is once again easy to see that the projection of K in Gqr

is uniformly distributed. Looking at Kp, the projection of K in Gp, we see that

Kp = g
−abcxf ′1
p ·

∏

i

g
−af ′1viw1,i−af ′2cxviw2,i
p · gabf ′2cyviw1,i

p · g−w1,i·r′1,i−w2,i·r′2,i
p · h−xi·r′1,i

p · k−yi·r′2,i
p

=
∏

i

h
−axivif

′
1

p · g−af ′1viw1,i−af ′2cxviw2,i
p · gabf ′2cyviw1,i

p · (h1,i)−r′1,i · (h2,i)−r′2,i

= h
cxcyabf ′2
p · h−cxcyabf ′2

p

∏

i

g
−af ′2cxviw2,i
p · gabf ′2cyviw1,i

p · (h1,i)−r′1,i−avif
′
1 · (h2,i)−r′2,i

=
∏

i

h
xivicyabf ′2
p · k−cxyiviaf ′2

p · g−af ′2cxviw2,i
p · gabf ′2cyviw1,i

p · (h1,i)−r′1,i−avif
′
1 · (h2,i)−r′2,i

=
∏

i

(h1,i)−r′1,i−avif
′
1+abf ′2cyvi · (h2,i)−r′2,i−acxvif

′
2 =

∏

i

(h1,i)−r1,i · (h2,i)−r2,i ,

and so Kp has the right distribution. We conclude that K has the correct distribution.

The challenge ciphertext. The challenge ciphertext is generated in a straightforward way. The

16

simulator chooses {R7,i, R8,i} ∈ Gr at random, sets C0 = gs
p, and computes:

C1,i =
(
gbs
p Q2R2

)xi · (gs
p)

w1,i ·R7,i

= (h1,i)sQxi
2 R′

7,i

C2,i = T yi(gs
p)

w2,iR8,i

= (h2,i)s
(
gξ
q

)yi

R′
8,i,

where {R′
7,i, R

′
8,i} again refer to random elements of Gr whose exact values are unimportant.

Analysis. By examining the projections of the components of the challenge ciphertext in the groups
Gp, Gq, and Gr, it can be verified that when ξ is random the challenge ciphertext is distributed
exactly as in Game3, whereas if ξ = 0 the challenge ciphertext is distributed exactly as in Game2.
It follows that if A succeeds at distinguishing these two games then our simulator can use A to
break Assumption 1. Thus if Assumption 1 holds, these two games are indistinguishable.

4.4.3 Completing the Proof

Our scheme is symmetric with respect to the roles of h1,i and h2,i. Thus, the proof that Game3

and Game4 are indistinguishable exactly parallels the proof (given in Section 4.4.2) that Game2 and
Game3 are indistinguishable, while the proof that Game4 and Game5 are indistinguishable exactly
parallels the proof (given in Section 4.4.1) that Game1 and Game2 are indistinguishable. This
concludes the proof of Theorem 4.1.

5 Applications of Our Main Construction

In this section we discuss some applications of inner-product predicate encryption schemes as
constructed in this paper. Our treatment here is general, and we do not rely on any specific details
of our construction.

Given a vector ~x ∈ Z`
N , we denote by f~x : Z`

N → {0, 1} the function such that f~x(~y) = 1

iff 〈~x, ~y〉 = 0 mod N . We define F`
def= {f~x | ~x ∈ Z`

N}. An inner product encryption scheme of
dimension ` is an attribute-hiding predicate encryption scheme for the class of predicates F`.

5.1 Anonymous Identity-Based Encryption

As a warm-up, we show how anonymous identity-based encryption (IBE) can be recovered from
any inner-product encryption scheme with ` = 2. To generate the master public and secret keys
for the IBE scheme, simply run the setup algorithm of the underlying inner-product encryption
scheme. To generate secret keys for the identity I ∈ ZN , set ~I := (1, I) and output the secret key
for the predicate f~I . To encrypt a message M for the identity J ∈ ZN , set ~J := (−J, 1) and encrypt
the message using the encryption algorithm of the underlying inner-product encryption scheme and
the attribute ~J . Since

〈
~I, ~J

〉
= 0 iff I = J , correctness and security follow.

17

5.2 Hidden-Vector Encryption

Given a set Σ, let Σ? = Σ ∪ {?}. Hidden-vector encryption (HVE) [14] corresponds to a predicate
encryption scheme for the class of predicates Φhve

` = {φhve
(a1,...,a`)

| a1, . . . , a` ∈ Σ?}, where

φhve
(a1,...,a`)

(x1, . . . , x`) =
{

1 if, for all i, either ai = xi or ai = ?
0 otherwise

.

A generalization of the ideas from the previous section can be used to realize hidden-vector en-
cryption with Σ = ZN from any inner-product encryption scheme (Setup, Enc,GenKey,Dec) of
dimension 2`:

• The setup algorithm is unchanged.

• To generate a secret key corresponding to the predicate φhve
(a1,...,a`)

, first construct a vector
~A = (A1, . . . , A2`) as follows:

if ai 6= ? : A2i−1 := 1, A2i := ai

if ai = ? : A2i−1 := 0, A2i := 0.

Then output the key obtained by running GenKeySK(f ~A).

• To encrypt a message M for the attribute x = (x1, . . . , x`), choose random r1, . . . , r` ∈ ZN

and construct a vector ~X~r = (X1, . . . , X2`) as follows:

X2i−1 := −ri · xi, X2i := ri

(multiplication is done modulo N). Then output the ciphertext C ← EncPK(~X~r,M).
To see that correctness holds, let (a1, . . . , a`), ~A, (x1, . . . , x`), ~r, and ~X~r be as above. Then:

φhve
(a1,...,a`)

(x1, . . . , x`) = 1 ⇒ ∀~r :
〈

~A, ~X~r

〉
= 0 ⇒ ∀~r : f ~A(~X~r) = 1.

Furthermore, assuming gcd(ai − xi, N) = 1 for all i:

φhve
(a1,...,a`)

(x1, . . . , x`) = 0 ⇒ Pr~r
[〈

~A, ~X~r

〉
= 0

]
= 1/N ⇒ Pr~r

[
f ~A(~X~r) = 1

]
= 1/N,

which is negligible. Using this fact, one can prove security of the construction as well.
A straightforward modification of the above gives a scheme that is the “dual” of HVE, where

the set of attributes is (Σ?)` and the class of predicates is Φ̄hve
` = {φ̄hve

(a1,...,a`)
| a1, . . . , a` ∈ Σ} with

φ̄hve
(a1,...,a`)

(x1, . . . , x`) =
{

1 if, for all i, either ai = xi or xi = ?
0 otherwise

.

5.3 Predicate Encryption Schemes Supporting Polynomial Evaluation

We can also construct predicate encryption schemes for classes of predicates corresponding to
polynomial evaluation. Let Φpoly

≤d = {fp | p ∈ ZN [x], deg(p) ≤ d}, where

fp(x) =
{

1 if p(x) = 0 mod N
0 otherwise

for x ∈ ZN . Given an inner-product encryption scheme (Setup,Enc,GenKey, Dec) of dimension d+1,
we can construct a predicate encryption scheme for Φpoly

≤d as follows:

18

• The setup algorithm is unchanged.

• To generate a secret key corresponding to the polynomial p = adx
d + · · · + a0x

0, set ~p :=
(ad, . . . , a0) and output the key obtained by running GenKeySK(f~p).

• To encrypt a message M for the attribute w ∈ ZN , set ~w := (wd mod N, . . . , w0 mod N) and
output the ciphertext C ← EncPK(~w, M).

Since p(w) = 0 iff 〈~p, ~w〉 = 0, correctness and security follow.
The above shows that we can construct predicate encryption schemes where predicates corre-

spond to univariate polynomials whose degree d is polynomial in the security parameter. This can
be generalized to the case of polynomials in t variables, and degree at most d in each variable, as
long as dt is polynomial in the security parameter.

We can also construct schemes that are the “dual” of the above, in which attributes correspond
to polynomials and predicates involve the evaluation of the input polynomial at some fixed point.

5.4 Disjunctions, Conjunctions, and Evaluating CNF and DNF Formulas

Given the polynomial-based constructions of the previous section, we can fairly easily build pred-
icate encryption schemes for disjunctions of equality tests. For example, the predicate ORI1,I2 ,
where ORI1,I2(x) = 1 iff either x = I1 or x = I2, can be encoded as the univariate polynomial

p(x) = (x− I1) · (x− I2),

which evaluates to 0 iff the relevant predicate evaluates to 1. Similarly, the predicate ORI1,I2 , where
ORI1,I2(x1, x2) = 1 iff either x1 = I1 or x2 = I2, can be encoded as the bivariate polynomial

p′(x1, x2) = (x1 − I1) · (x2 − I2).

Conjunctions can be handled in a similar fashion. Consider, for example, the predicate ANDI1,I2

where ANDI1,I2(x1, x2) = 1 if both x1 = I1 and x2 = I2. Here, we determine the relevant secret
key by choosing a random r ∈ ZN and letting the secret key correspond to the polynomial

p′′(x1, x2) = r · (x1 − I1) + (x2 − I2).

Note that if ANDI1,I2(x1, x2) = 1 then p′′(x1, x2) = 0, whereas if ANDI1,I2(x1, x2) = 0 then, with
all but negligible probability over choice of r, it will hold2 that p′′(x1, x2) 6= 0.

The above ideas extend to more complex combinations of disjunctions and conjunctions, and
for boolean variables this means we can handle arbitrary CNF or DNF formulas. (For non-boolean
variables we do not know how to directly handle negation.) As pointed out in the previous section,
the complexity of the resulting scheme depends polynomially on dt, where t is the number of
variables and d is the maximum degree (of the resulting polynomial) in each variable.

2In general the secret key may leak the value of r, in which case the adversary will be able to find I ′1, I
′
2 such that

ANDI1,I2(I
′
1, I

′
2) 6= 1 yet p′′(I ′1, I

′
2) = 0. However, this is not a problem when considering the “selective” notion of

security where the adversary must commit to I ′1, I
′
2 at the outset of the experiment.

19

5.5 Exact Thresholds

We conclude with an application that relies directly on inner-product encryption. Here, we consider
“fuzzy IBE” [31], which can be mapped to the predicate encryption framework as follows: fix a
set A = {1, . . . , `} and let the set of attributes be all subsets of A. Predicates take the form
Φ = {φS | S ⊆ A} where φS(S′) = 1 iff |S ∩ S′| ≥ t, i.e., S and S′ overlap in at least t positions.

We can construct a scheme where the attribute space is the same as before, but the class of
predicates corresponds to overlap in exactly t positions. Namely, set Φ′ = {φ′S | S ⊆ A} with
φ′S(S′) = 1 iff |S ∩ S′| = t. Then, given any inner-product encryption scheme of dimension ` + 1,
we construct a scheme as follows:

• The setup algorithm is unchanged.

• To generate a secret key for the predicate φ′S , first define a vector ~v ∈ Z`+1
N as follows:

for 1 ≤ i ≤ ` : vi = 1 if i ∈ S, and vi = 0 otherwise
v`+1 = 1.

Then output the key obtained by running GenKeySK(f~v).

• To encrypt a message M for the attribute S′ ⊆ A, define a vector ~x as follows:

for 1 ≤ i ≤ `: xi = 1 if i ∈ S′, and xi = 0 otherwise
x`+1 = −t mod N.

Then output the ciphertext C ← EncPK(~x,M).
Since |S ∩ S′| = t exactly when 〈~v, ~x〉 = 0, correctness and security follow.

An interesting open direction is to create the functionality that can test if |S ∩ S′| ≥ t without
revealing anything more about the size of the overlap.

Acknowledgments

We thank Omkant Pandey and Yannis Rouselakis for pointing out a mistake in an earlier version
of Theorem A.2, and the referees for their many helpful comments on earlier drafts of this paper.

References

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven,
P. Paillier, and H. Shi. Searchable encryption revisited: Consistency properties, relation to
anonymous IBE, and extensions. Journal of Cryptology, 21(3):350–391, 2008.

[2] S. Al-Riyami, J. Malone-Lee, and N. Smart. Escrow-free encryption supporting cryptographic
workflow. Intl. J. Information Security, 5(4):217–229, 2006.

[3] W. Bagga and R. Molva. Policy-based cryptography and applications. In Financial Cryptog-
raphy and Data Security 2005, volume 3570 of LNCS, pages 72–87. Springer, 2005.

[4] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In
IEEE Symposium on Security & Privacy, pages 321–334. IEEE, 2007.

20

[5] D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption without random
oracles. In Advances in Cryptology — Eurocrypt 2004, volume 3027 of LNCS, pages 223–238.
Springer, 2004.

[6] D. Boneh and X. Boyen. Secure identity-based encryption without random oracles. In Advances
in Cryptology — Crypto 2004, volume 3152 of LNCS, pages 443–459. Springer, 2004.

[7] D. Boneh and X. Boyen. Short signatures without random oracles and the SDH assumption
in bilinear groups. Journal of Cryptology, 21(2):149–177, 2008.

[8] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity-based encryption with constant-
size ciphertext. In Advances in Cryptology — Eurocrypt 2005, volume 3494 of LNCS, pages
440–456. Springer, 2005.

[9] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in Cryptology —
Crypto 2004, volume 3152 of LNCS, pages 41–55. Springer, 2004.

[10] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with
keyword search. In Advances in Cryptology — Eurocrypt 2004, volume 3027 of LNCS, pages
506–522. Springer, 2004.

[11] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. SIAM Journal
on Computing, 32(3):586–615, 2003.

[12] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In 2nd Theory
of Cryptography Conference — TCC 2005, volume 3378 of LNCS, pages 325–341. Springer,
2005.

[13] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In
8th Theory of Cryptography Conference — TCC 2011, volume 6597 of LNCS, pages 253–273.
Springer, 2011.

[14] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In
4th Theory of Cryptography Conference — TCC 2007, volume 4392 of LNCS, pages 535–554.
Springer, 2007.

[15] X. Boyen. The uber-assumption family: A unified complexity framework for bilinear groups.
In 2nd Intl. Conference on Pairing-Based Cryptography, volume 5209 of LNCS, pages 39–56.
Springer, 2008.

[16] X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (without random
oracles). In Advances in Cryptology — Crypto 2006, volume 4117 of LNCS, pages 290–307.
Springer, 2006.

[17] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In Advances in Cryptology — Crypto 2004, volume 3152 of LNCS, pages 56–72. Springer,
2004.

[18] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. Journal
of Cryptology, 20(3):265–294, 2007.

21

[19] C. Cocks. An identity based encryption scheme based on quadratic residues. In Cryptogra-
phy and Coding, 8th IMA International Conference, volume 2260 of LNCS, pages 360–363.
Springer, 2001.

[20] D. M. Freeman. Converting pairing-based cryptosystems from composite-order groups to
prime-order groups. In Advances in Cryptology — Eurocrypt 2010, volume 6110 of LNCS,
pages 44–61. Springer, 2010.

[21] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156(16):3113–3121, 2008.

[22] C. Gentry. Practical identity-based encryption without random oracles. In Advances in Cryp-
tology — Eurocrypt 2006, volume 4004 of LNCS, pages 445–464. Springer, 2006.

[23] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In ACM CCS ’06: 13th ACM Conf. on Computer and
Communications Security, pages 89–98. ACM Press, 2006.

[24] A. Joux. A one-round protocol for tripartite Diffie-Hellman. Journal of Cryptology, 17(4):263–
276, 2004.

[25] A. Joux and K. Nguyen. Separating decision Diffie-Hellman from computational Diffie-Hellman
in cryptographic groups. Journal of Cryptology, 16(4):239–247, 2003.

[26] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional en-
cryption: Attribute-based encryption and (hierarchical) inner product encryption. In Advances
in Cryptology — Eurocrypt 2010, volume 6110 of LNCS, pages 62–91. Springer, 2010.

[27] V. I. Nechaev. On the complexity of a deterministic algorithm for the discrete logarithm.
Mathematical Notes, 55(2):165–172, 1994.

[28] T. Okamoto and K. Takashima. Hierarchical predicate encryption for inner products. In
Advances in Cryptology — Asiacrypt 2009, volume 5912 of LNCS, pages 214–231. Springer,
2009.

[29] T. Okamoto and K. Takashima. Fully secure functional encryption with general relations from
the decisional linear assumption. In Advances in Cryptology — Crypto 2010, volume 6223 of
LNCS, pages 191–208. Springer, 2010.

[30] R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-monotonic access
structures. In 14th ACM Conf. on Computer and Communications Security (CCS), pages 195–
203. ACM Press, 2007.

[31] A. Sahai and B. Waters. Fuzzy identity-based encryption. In Advances in Cryptology —
Eurocrypt 2005, volume 3494 of LNCS, pages 457–473. Springer, 2005.

[32] A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology
— Crypto ’84, volume 196 of LNCS, pages 47–53. Springer, 1985.

[33] E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption systems. In 6th Theory of
Cryptography Conference — TCC 2009, volume 5444 of LNCS, pages 457–473. Springer, 2009.

22

[34] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range
queries over encrypted data. In IEEE Symposium on Security & Privacy, pages 350–364. IEEE,
2007.

[35] V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances in Cryp-
tology — Eurocrypt ’97, volume 1233 of LNCS, pages 256–266. Springer, 1997.

[36] B. Waters. Efficient identity-based encryption without random oracles. In Advances in Cryp-
tology — Eurocrypt 2005, volume 3494 of LNCS, pages 114–127. Springer, 2005.

A Supporting our Assumptions in the Generic-Group Model

We support Assumptions 1 and 2 by showing that they hold in generic bilinear groups of composite
order N , as long as finding a non-trivial factor of N is hard. In doing so, we first prove two “master
theorems” for hardness in generic groups of composite order. These theorems generalize the result
by Boneh, Boyen, and Goh [8] (with some extensions given in [15]) in two ways: in addition to
handling groups of composite order, they can be used for assumptions where the target element is
in the bilinear group G (instead of the target group GT). Thus, they also apply to assumptions such
as the linear assumption of Boneh, Boyen, and Shacham [9] or the subgroup decision assumption
introduced by Boneh, Goh, and Nissim [12].

A.1 The Generic-Group Model: an Overview

The generic-group model was introduced in [27, 35], and has been extended to the case of bilinear
groups in [8, 15]. This model provides a way to study “generic” group algorithms that act “inde-
pendently” of the group representation (and therefore apply to any group, as long as the group
operation itself can be computed in polynomial time), in a way made more precise below. It is
important to qualify that various nongeneric-group algorithms are known for specific groups, and
so a proof of security in the generic-group model does not guarantee security when the group is
instantiated in some concrete fashion. It is, in part, for this reason that we have proved security
of our constructions relative to our stated assumptions (and now justify the assumptions in the
generic-group model), rather than aiming for a direct proof that our constructions are secure in the
generic-group model.

In the generic-group model, algorithms are not given any “actual” representations of group
elements but are instead only given access to group elements via their unique “handles”. (Note
that the algorithm can check equality of elements, since two elements are equal iff they have the same
handle.) An algorithm in this setting can perform computations on group elements only by issuing
instructions in some explicitly provided set of allowed instructions. So, for example, an element g
may be represented by the handle “1” and h by the handle “2”; an algorithm can multiply these two
elements by explicitly issuing the instruction mult(“1”, “2”). In response to this instruction, the
group element gh is computed: if element gh has not already been assigned a handle, a new handle
is assigned and returned to the algorithm; if gh has already been assigned a handle, that handle
is returned. (So, for example, if g were the identity element then the instruction mult(“1”, “2”)
would simply return “2”.) In addition to the multiplication instruction, the generic-group model
also provides an exponentiation instruction exp that takes as input an element’s handle and an
integer, and returns the handle of the given element raised to the given power. (We allow negative

23

exponents, so that inverses can also be computed.) For simplicity, we restrict the algorithm to only
using as input those handles that it has already been given.3

In the setting of bilinear groups, we have two groups each with their own multiplication and
exponentiation instructions and whose elements all have distinct handles. We also add a pairing
instruction that takes as input two handles of elements from the first group and outputs the handle
of an element from the second (“target”) group.

A.2 A “Master Theorem” for Hardness in Composite-Order Bilinear Groups

Before stating our theorems, we introduce some notation. We will consider cyclic bilinear groups
of order N , where N =

∏m
k=1 pk is the product of m distinct primes, each larger than 2n. Let G

denote the “base group” and let GT denote the “target group”; i.e., the bilinear map ê is from
G × G to GT . Each element g ∈ G can be written as g = ga1

p1
ga2
p2
· · · gam

pm
, where ai ∈ Zpi and gpi

denotes some fixed generator of the subgroup of order pi. We can therefore represent each element
g ∈ G as an m-tuple (a1, . . . , am). We can do the same with elements in GT (with respect to the
generators {ê(gpi , gpi)}i), and will represent elements in GT as bracketed tuples [a1, . . . , am].

Using the above notation, the product of (a1, . . . , am) and (b1, . . . , bm) is the element (a1 + b1,
. . ., am + bm), where addition in component i is done modulo Zpi . Similarly (a1, . . . , am) raised to
the power γ ∈ Z is the element (γa1, . . . , γam). (Analogous results hold for elements of GT .) It will
be therefore be convenient to treat these tuples as “vectors” where vector addition corresponds to
multiplication in the group and vector multiplication by a scalar corresponds to group exponenti-
ation. The pairing of (a1, . . . , am), (b1, . . . , bm) ∈ G gives the element [a1b1, . . . , ambm] ∈ GT .

In an experiment involving the generic group, we present an algorithm A with a set of group
elements generated at random according to some distribution. We describe the distribution of
these group elements by a vector of monomials over a set of formal variables (written using capital
letters), where each formal variable is chosen independently and uniformly at random from the
appropriate domain. For example, a random element of G can be described by X = (X1, . . . , Xm),
where each Xi is chosen uniformly from Zpi . (Random variables taking values in GT are expressed
in the same way, but using the bracket notation.) Thus, when we say that an algorithm is given
the random variable X = (X1, . . . , Xm), we mean that random x1, . . . , xm are chosen uniformly
from the appropriate domains and the algorithm is given (the handle for) element (x1, . . . , xm).
Dependencies in the random variables are made explicit by re-using the same formal variable; for
example, a random “Diffie-Hellman-like” tuple (with m = 2) can be described by the three elements
X = (X1, X2), Y = (Y1, Y2), and Z = (X1Y1, X2Y2).

We say a random group element expressed as above has degree t if the maximum (total) degree
of any monomial in its vector representation is t. So, for example, in the “Diffie-Hellman-like” tuple
given above X and Y have degree 1, whereas Z has degree 2.

Given two sets of random variables {Xi}I
i=1 and {Bj}J

j=1 (each expressed as above) over the same
group, we say that {Xi} is dependent on {Bj} if there exist γi, γ

′
j ∈ Z∗N with (γ1, . . . , γI) 6= (0, . . . , 0)

such that
∑

i γiXi and
∑

j γ′jBj are identical as vectors of formal polynomials. If no such values
exist, then {Xi} is said to be independent of {Bj}.

We may now state our theorems.

3Another way to ensure this is to use randomly generated handles that the adversary is unable to guess except
with negligible probability.

24

Theorem A.1. Let N =
∏m

k=1 pk be a product of distinct primes, each greater than 2n. Let {Ai}I
i=1

be random variables over G, and let {Bj}J
j=1, T0, T1 be random variables over GT , where all random

variables have degree at most t. Consider the following experiment in the generic-group model:

An algorithm is given N , {Ai}I
i=1, and {Bj}J

j=1. A random bit b is chosen, and the
adversary is given Tb. The algorithm outputs a bit b′, and succeeds if b′ = b. The algo-
rithm’s advantage is the absolute value of the difference between its success probability
and 1/2.

Suppose each of T0 and T1 is independent of {Bj}J
j=1 ∪ {ê(Ai1 , Ai2)}I

i1,i2=1. Then given any algo-
rithm A issuing at most q instructions and having advantage δ in the above experiment, A can be
used to find a non-trivial factor of N (in time polynomial in n and the running time of A) with
probability at least δ −O((q + I + J)2t/2n).

Thus, if N is generated in such a way that it is hard to find a non-trivial factor of N , the
advantage of any polynomial-time algorithm A is negligible in n.

Proof We define a series of games in which an algorithm A acts as above. In the first game,
which corresponds to an execution of A in the generic-group model, each of the random variables
{Ai}, {Bj}, T0, T1 is instantiated by choosing uniform values for each of the formal variables and
giving the handles of {Ai}, {Bj}, and Tb to the algorithm A. The algorithm then issues a sequence
of multiplication, exponentiation, and pairing instructions, and is given in return the appropriate
handles. Finally, the algorithm outputs a bit b′ and its advantage is measured as defined above.

We next define a second game in which the random variables are never instantiated, but instead
the game only keeps track of the formal polynomials themselves. Furthermore, the game now uses
identical handles for two elements only if these elements are equal as formal polynomials in each
of their components. (So, in the original game the random variables X = (X1, . . . , Xm) and
Y = (Y1, . . . , Ym) could be assigned the same handle if it happened to be the case that Xi = Yi for
all i. In this game, however, these two tuples of formal polynomials are always treated as different.)
This only introduces a difference in case it happens during the course of the first experiment that
two different vectors of formal polynomials take on the same value. For any fixed pair of distinct
formal polynomials, the probability that they take on the same value is bounded by 2t/2n (since
the maximum degree of any polynomial constructed during the course of the experiment is 2t).
Summing over all pairs of elements either given to A or produced as a result of A’s instructions
during the course of the experiment shows that the statistical difference between the first and
second experiments is at most O((q + I + J)2 · t/2n).

In the third game, we record the formal polynomials as before except that now all computation,
in each of the m components, is done modulo N rather than modulo the appropriate pi. Now, two
elements are assigned identical handles only if they are equivalent as (tuples of) formal polynomials
over ZN . This only introduces a difference if two polynomials are generated during the course of the
experiment that are different modulo N but would be identical when each component is reduced
modulo the appropriate pi. But whenever this occurs, a non-trivial factor of N can be recovered
from the coefficients of any two such polynomials.

Finally, we observe that in the third game the only possible way in which the algorithm can
distinguish whether it is given T0 or T1 is if the algorithm is able to generate a polynomial that
would be formally equivalent to some previously generated polynomial for one value of b but not the

25

other. But this implies that, for some b and γ 6= 0, algorithm A can construct a formal polynomial
∑

i,j

γi,j · ê(Ai, Aj) +
∑

i

γi ·Bi − γ · Tb

that is equivalent to the 0-polynomial when the coefficients are taken modulo N . This cannot occur
because of the assumption that each of T0, T1 is independent of {Bj}J

j=1 ∪ {ê(Ai1 , Ai2)}I
i1,i2=1.

Theorem A.2. Let N =
∏m

k=1 pk be a product of distinct primes, each greater than 2n. Let
{Ai}I

i=1, T0, T1 be random variables over G, and let {Bj}J
j=1 be random variables over GT , where

all random variables have degree at most t. Consider the same experiment as in Theorem A.1.
Let S def= {i | ê(T0, Ai) 6= ê(T1, Ai)} (where inequality refers to inequality as formal polynomi-

als). Suppose each of T0 and T1 is independent of {Ai}I
i=1, and furthermore that {ê(T0, Ak)}k∈S ∪

{ê(T0, T0)} is independent of {Bj}J
j=1 ∪ {ê(Ai1 , Ai2)}I

i1,i2=1 ∪ {ê(T0, Ak)}k 6∈S , and {ê(T1, Ak)}k∈S ∪
{ê(T1, T1)} is independent of {Bj}J

j=1 ∪ {ê(Ai1 , Ai2)}I
i1,i2=1 ∪ {ê(T1, Ak)}k 6∈S . Then given any algo-

rithm A issuing at most q instructions and having advantage δ in the above experiment, A can be
used to find a non-trivial factor of N (in time polynomial in n and the running time of A) with
probability at least δ −O((q + I + J)2t/2n).

Thus, if N is generated in such a way that it is hard to find a non-trivial factor of N , the
advantage of any polynomial-time algorithm A is negligible in n.

Proof The proof is identical to the proof of Theorem A.1 except for the analysis of the third
game. As in the earlier proof, in the third game the only possible way in which the algorithm can
distinguish whether it is given T0 or T1 is if the algorithm is able to generate a formal polynomial
that would be formally equivalent to some previously generated polynomial for one value of b but
not the other. But then we either have (for some b and γ 6= 0)

γ · Tb =
∑

i

γiAi,

or else we have

α0 · ê(Tb, Tb) +
∑

i∈S
αi · ê(Tb, Ai) =

∑

i6∈S
βi · ê(Tb, Ai) +

∑

i

γi ·Bi +
∑

i,j

γi,j · ê(Ai, Aj),

where at least one of the {αi} are non-zero modulo N (otherwise, equality would hold for both
values of b). By the independence assumptions, neither of these possibilities can occur.

A.3 Applying the Master Theorem to Our Assumptions

We now show how to apply the theorems of the previous section to prove that our assumptions
hold in the generic-group model.

Assumption 2. We begin with Assumption 2 (since it corresponds to the simpler Theorem A.1).
Using the notation of the previous section, this assumption may be written as:

A1 = (1, 0, 0), A2 = (0, 1, 0), A3 = (0, 0, 1), A4 = (X, 0, 0)
A5 = (S, 0, 0), A6 = (XS, Y1, 0), A7 = (Γ, Y2, 0), B1 = [X Γ, 0, 0],

T0 = [X ΓS, 0, 0], T1 = [Z1, Z2, Z3].

26

It is immediate that T1 is independent of B1 ∪ {ê(Ai, Aj)}. As for T0, the only way a dependence
can occur is if the set {B1} ∪ {ê(Ai1 , Ai2} can be used to produce an element of GT with first
component equal to X ΓS; that monomial occurs only in ê(A6, A7), but in that element there is an
additional monomial Y1Y2 in the second component that cannot be canceled.

Assumption 1. Assumption 1 may be written as:

A1 = (1, 0, 0), A2 = (0, 0, 1), A3 = (0, 1, Y1),
A4 = (B, 0, 0), A5 = (B2, 0, 0), A6 = (A, 1, 0),

A7 = (AB, Y2, 0), A8 = (S, 0, 0), A9 = (BS, Y3, Y4),
T0 = (B2S, 0, Z1), T1 = (B2S,Z2, Z1).

It is not difficult to see that both T0 and T1 are independent of {Ai}. Using the notation of
Theorem A.2, we have S = {3, 6, 7, 9}. Considering T0 first, we obtain the following tuples:

C
def= ê(T0, T0) = [B4S2, 0, Z2

1]

C3
def= ê(T0, A3) = [0, 0, Z1Y1] C6

def= ê(T0, A6) = [AB2S, 0, 0]

C7
def= ê(T0, A7) = [AB3S, 0, 0] C9

def= ê(T0, A9) = [B3S2, 0, Z1Y4].

It is clear that C,C3, and C9 are independent of everything else, since an element in GT whose
third component contains Z2

1 (resp., Z1Y1 or Z1Y4) cannot be generated in any other way from
the given elements. As for C6, the only other way to obtain an element whose first component is
AB2S is by computing ê(A7, A9), which yields the element [AB2S, Y2Y3, 0]. But there is no other
way to generate an element whose second component is Y2Y3, and hence no way to cancel that
term. Finally, considering C7, there is no other way to obtain an element whose first component
is AB3S. Thus, each of the above elements satisfy the independence requirement of Theorem A.1.
Analogous arguments apply for the case of T1.

B A Full-Fledged Predicate Encryption Scheme

In Section 4, we showed a construction of a predicate-only scheme. Such a scheme can be used to
encrypt messages, as well, but inefficiently: bit-by-bit. Here, we extend that scheme to obtain a
more efficient full-fledged predicate encryption scheme in the sense of Definition 2.1. The additions
in the present scheme are boxed for the reader’s convenience.

Setup(1n). The setup algorithm first runs G(1n) to obtain (p, q, r,G,GT , ê) with G = Gp×Gq×Gr.
Next, it computes gp, gq, and gr as generators of Gp,Gq, and Gr, respectively. It then chooses
R1,i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp uniformly at random for i = 1 to `, and R0 ∈ Gr uni-
formly at random. It also chooses random γ ∈ Zp and h ∈ Gp. The public parameters include
(N = pqr,G,GT , ê) along with:

PK =
(
gp, gr, Q = gq ·R0, P = ê(gp, h)γ , {H1,i = h1,i ·R1,i, H2,i = h2,i ·R2,i}`

i=1

)
.

The master secret key SK is
(
p, q, r, gq, h−γ , {h1,i, h2,i}`

i=1

)
.

27

EncPK(~x,M). Let ~x = (x1, . . . , x`) with xi ∈ ZN , and view M as an element of GT . This algorithm
chooses random s, α, β ∈ ZN and R3,i, R4,i ∈ Gr for i = 1 to `. It outputs the ciphertext

C =
(

C ′ = M · P s , C0 = gs
p,

{
C1,i = Hs

1,i ·Qα·xi ·R3,i, C2,i = Hs
2,i ·Qβ·xi ·R4,i

}`

i=1

)
.

GenKeySK(~v). Let ~v = (v1, . . . , v`). This algorithm chooses random r1,i, r2,i ∈ Zp for i = 1 to `,
random R5 ∈ Gr, random f1, f2 ∈ Zq, and random Q6 ∈ Gq. It then outputs

SK~v =

(
K = R5 ·Q6 · h−γ ·

∏̀

i=1

h
−r1,i

1,i · h−r2,i

2,i ,
{

K1,i = g
r1,i
p · gf1·vi

q , K2,i = g
r2,i
p · gf2·vi

q

}`

i=1

)
.

DecSK~v
(C). Let C and SK~v be as above. The decryption algorithm outputs

C ′ · ê(C0,K) ·
∏̀

i=1

ê(C1,i,K1,i) · ê(C2,i,K2,i).

As we have described it, decryption never returns an error (i.e., even when 〈~v, ~x〉 6= 0). We will
show below that when 〈~v, ~x〉 6= 0, then the “projection” of the result on the order-q subgroup of GT

is statistically close to random. By restricting the message space to some efficiently recognizable
subset of GT whose size is negligible compared to q, we recover the desired semantics by returning
an error if the recovered message does not lie in this subset.

Correctness. Let C and SK~v be as above. Then

C ′ · ê(C0, K) ·
∏̀

i=1

ê(C1,i, K1,i) · ê(C2,i,K2,i)

= M · P s · ê
(

gs
p, R5Q6h

−γ
∏̀

i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
∏̀

i=1

ê
(
Hs

1,iQ
α·xiR3,i, g

r1,i
p gf1·vi

q

)
· ê

(
Hs

2,iQ
β·xiR4,i, g

r2,i
p gf2·vi

q

)

= M · P s · ê
(

gs
p, h−γ

∏̀

i=1

h
−r1,i

1,i h
−r2,i

2,i

)
·
∏̀

i=1

ê
(
hs

1,i g
α·xi
q , g

r1,i
p gf1·vi

q

)
· ê

(
hs

2,i g
β·xi
q , g

r2,i
p gf2·vi

q

)

= M · P s · ê(gp, h)−γs ·
∏̀

i=1

ê(gq, gq)(αf1+βf2)xivi = M · ê(gq, gq)(αf1+βf2)〈~x,~v〉.

If 〈~x,~v〉 = 0 mod N , then the above evaluates to M . If 〈~x,~v〉 6= 0 mod N there are two cases:
if 〈~x,~v〉 6= 0 mod q then the above evaluates to M · G, where G is statistically close to uniform
in the order-q subgroup of GT . (Recall that α, β are chosen at random.) It is possible that
〈~x,~v〉 = 0 mod q, in which case the above always evaluates to M ; however, this reveals a non-trivial
factor of N and so an adversary can cause this condition to occur with only negligible probability.

28

B.1 Proof of Security

Theorem B.1. If G satisfies Assumptions 1 and 2 then the scheme described in the previous
section is an attribute-hiding predicate encryption scheme.

We prove that the scheme described in the previous section satisfies Definition 2.2. In proving
this, we distinguish the case when M0 = M1 and the case when M0 6= M1. We show that the
adversary’s probability of success conditioned on the occurrence of either case is negligibly close
to 1/2.

A proof for the case M0 = M1 follows mutatis mutandis from the proof given in Section 4.
Specifically, if M0 = M1 = M then the adversary gets no advantage from the extra term M · P s

included in the challenge ciphertext and so the only point to verify is that, throughout the proofs
in Sections 4.4.1 and 4.4.2, the simulator can compute the value P s (so that it can construct the
additional element C ′ = M · P s). This is easy to do if the simulator computes P exactly as in the
Setup algorithm, and stores h−γ . We omit the straightforward details.

Given the above, we concentrate here on proving security under the assumption that M0 6= M1.
Since we are considering only this case, we can assume the adversary is restricted to requesting keys
corresponding to vectors ~v for which 〈~v, ~x〉 6= 0 and 〈~v, ~y〉 6= 0, where ~x, ~y are the vectors output by
the adversary at the outset of the experiment. We establish the result in this case using a sequence
of games, defined as follows.

Game0: The challenge ciphertext is generated as a proper encryption of M0 using ~x. That is, we
choose random s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr, and compute the ciphertext as

C =
(

C ′ = M0 · P s, C0 = gs
p,

{
C1,i = Hs

1,iQ
αxiR3,i, C2,i = Hs

2,iQ
βxiR4,i

}`

i=1

)
.

Game1: We now generate the challenge ciphertext as a proper encryption of a random element
of GT , but still using ~x. I.e., the ciphertext is formed as above except that C ′ is chosen
uniformly from GT .

Game2: We now generate the {C2,i} components as if encryption were done using ~0. That is, we
choose random s, α, β ∈ ZN , random {R3,i, R4,i} ∈ Gr, and random C ′ ∈ GT , and compute
the ciphertext as

C =
(
C ′, C0 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,i R4,i

}`

i=1

)
.

This exactly parallels Game2 in the proof of Theorem 4.1.

Game3: We now generate the {C2,i} components using vector ~y. That is, we choose random
s, α, β ∈ ZN , random {R3,i, R4,i} ∈ Gr, and random C ′ ∈ GT , and compute the ciphertext as

C =
(

C ′, C0 = gs
p,

{
C1,i = Hs

1,iQ
αxiR3,i, C2,i = Hs

2,iQ
βyiR4,i

}`

i=1

)
.

This exactly parallels Game3 in the proof of Theorem 4.1.

Game4 and Game5: These games are defined analogously to Game2 and Game1, respectively, as
in the proof of Theorem 4.1. We continue to let C ′ be a random element of GT . Note that
Game5 corresponds to a proper encryption of a random element of GT using ~y.

29

Game6: The challenge ciphertext is generated as a proper encryption of M1 using ~y.

In the next section we prove that, under Assumption 2, Game0 and Game1 are indistinguishable.
Indistinguishability of the games Gamei and Gamei+1, for i = 1 to 4, follows mutatis mutandis from
the proofs in Sections 4.4.1 and 4.4.2. The proof that Game5 and Game6 are indistinguishable is
symmetric to the proof that Game0 and Game1 are indistinguishable, and is therefore omitted.

B.1.1 Indistinguishability of Game0 and Game1

Fix an adversary A. We describe a simulator who is given (N = pqr,G,GT , ê) along with the
elements gp, gq, gr, h, gs

p, hsQ1, gγ
pQ2, ê(gp, h)γ , and an element T which is either equal to

ê(gp, h)γs or is uniformly distributed in GT (cf. Assumption 2). Note that the simulator is now able
to sample uniformly from Gq and Gr using gq and gr, respectively. In particular, the simulator can
sample uniformly from Gqr. The simulator interacts with A as we now describe.

Public parameters. The simulator begins by giving N to A, who outputs vectors ~x, ~y. The sim-
ulator chooses random {w1,i, w2,i} ∈ ZN and random {R1,i, R2,i}, R0 ∈ Gr, includes (N,G,GT , ê)
in the public parameters, and sets the remainder of the parameters as follows:

PK =
(
gp, gr, Q = gqR0, P = ê(gp, h)γ ,

{
H1,i = hxig

w1,i
p R1,i, H2,i = hxig

w2,i
p R2,i

}`

i=1

)
.

In doing so, the simulator is implicitly setting h1,i = hxig
w1,i
p and h2,i = hxig

w2,i
p . Note that PK

has the appropriate distribution.

Key derivation. The adversary A may request secret keys corresponding to different vectors ~v, as
long as 〈~v, ~x〉 6= 0 (we do not use the fact that 〈~v, ~y〉 6= 0 here). We now describe how the simulator
prepares the secret key corresponding to any such vector.

Say the adversary requests the secret key for vector ~v, and let k = 1/(2 · 〈~x,~v〉) mod N . (If
gcd(〈~x,~v〉 , N) 6= 1) then the adversary has factored N ; this occurs with negligible probability.)
The simulator first chooses random f ′1, f

′
2, {r′1,i, r

′
2,i} ∈ ZN . Next, for all i it computes:

K1,i =
(
gγ
pQ2

)−kvi · gf ′1vi
q · gr′1,i

p

= g
−kviγ+r′1,i
p · g(f ′1−kc)·vi

q

(where we set c = loggq
Q2), and

K2,i =
(
gγ
pQ2

)−kvi · gf ′2vi
q · gr′2,i

p

= g
−kviγ+r′2,i
p · g(f ′2−kc)·vi

q .

The simulator then chooses random QR ∈ Gqr and computes:

K = QR ·
∏̀

i=1

((
g

w1,i
p hxi

)−r′1,i · (gγ
pQ2

)kviw1,i
)
·
((

g
w2,i
p hxi

)−r′2,i · (gγ
pQ2

)kviw2,i
)

.

Finally, the simulator hands the adversary SK~v = (K, {K1,i,K2,i}`
i=1) as the key.

30

To see that this key has the correct distribution, note that by construction of the {K1,i,K2,i}
the simulator is implicitly setting f1 = f ′1 − kc and f2 = f ′2 − kc; furthermore, for all i, we have

r1,i = −kγvi + r′1,i

r2,i = −kγvi + r′2,i.

These values are all uniformly and independently distributed in ZN . Next, note that

∏̀

i=1

(
g

w1,i
p hxi

)−r′1,i · (gγ
p

)kviw1,i =
∏̀

i=1

g
−w1,ir

′
1,i+kγviw1,i

p · h−xir
′
1,i

=
∏̀

i=1

g
−w1,i·(r1,i+kγvi)+kγviw1,i
p · h−xi·(r1,i+kγvi)

=
∏̀

i=1

(
hxig

w1,i
p

)−r1,i · h−γkvixi = h−γ/2 ·
∏̀

i=1

h
−r1,i

1,i ,

using the fact that 〈~v, ~x〉 = 1/2k mod N . Thus, looking at Kp (the projection of K in Gp) we have

Kp =
∏̀

i=1

((
g

w1,i
p hxi

)−r′1,i · (gγ
p

)kviw1,i
)
·
((

g
w2,i
p hxi

)−r′2,i · (gγ
p

)kviw2,i
)

= h−γ ·
∏̀

i=1

h
−r1,i

1,i · h−r2,i

2,i ,

and so Kp (and hence K) is distributed appropriately.

The challenge ciphertext. The challenge ciphertext is generated as follows. The simulator
chooses random {R7,i, R8,i} ∈ Gr and Q′

1 ∈ Gq, sets C ′ = M0 · T , sets C0 = gs
p, and computes:

C1,i =
(
gs
p

)w1,i · (hsQ1)
xi ·R7,i

=
(
hxig

w1,i
p

)s ·Qxi
1 ·R7,i

C2,i =
(
gs
p

)w2,i · (hsQ1)
xi · (Q′

1)
xi ·R8,i

=
(
hxig

w2,i
p

)s · (Q1Q
′
1)

xi ·R8,i .

Analysis. Components C0, {C1,i}, and {C2,i} of the ciphertext are distributed exactly as in Game0

and these components remain unchanged in Game1. It can then be verified that if T = ê(gp, h)γs

then C ′ is distributed as in Game0, whereas if T is chosen uniformly from GT then C ′ is distributed
as in Game1. It follows that if A succeeds at distinguishing these two games then our simulator can
use A to break Assumption 2. Thus if Assumption 2 holds, these two games are indistinguishable.

31

