
Implementation of Chosen-Ciphertext Attacks

against PGP and GnuPG

Kahil Jallad1,4, Jonathan Katz2,4, Jena J. Lee4, and Bruce Schneier3

1 The Eon Company
kajal@eoncompany.com

2 Dept. of Computer Science, University of Maryland
jkatz@cs.umd.edu

3 Counterpane Internet Security, Inc.
schneier@counterpane.com

4 Dept. of Computer Science, Columbia University

Abstract. We recently noted [6] that PGP and other e-mail encryption
protocols are, in theory, highly vulnerable to chosen-ciphertext attacks in
which the recipient of the e-mail acts as an unwitting “decryption oracle”.
We argued further that such attacks are quite feasible and therefore
represent a serious concern. Here, we investigate these claims in more
detail by attempting to implement the suggested attacks. On one hand,
we are able to successfully implement the described attacks against PGP
and GnuPG (two widely-used software packages) in a number of different
settings. On the other hand, we show that the attacks largely fail when
data is compressed before encryption.

Interestingly, the attacks are unsuccessful for largely fortuitous reasons;
resistance to these attacks does not seem due to any conscious effort made
to prevent them. Based on our work, we discuss those instances in which
chosen-ciphertext attacks do indeed represent an important threat and
hence must be taken into account in order to maintain confidentiality.
We also recommend changes in the OpenPGP standard [3] to reduce the
effectiveness of our attacks in these settings.

1 Introduction

Electronic mail (e-mail) has become an essential and ubiquitous communication
tool. As such, users and businesses have become concerned with the privacy of
their e-mail and have turned to both commercially- and freely-available e-mail
encryption software to achieve confidentiality. Typical users of e-mail encryption
software are not educated in good security practices; it is therefore important to
design robust software whose security is not compromised even when the software
is used in a naive manner.

It was recently noted [6] that, in principle, the secrecy provided by commonly-
used e-mail encryption protocols can be completely violated by an adversary us-
ing a chosen-ciphertext attack 1 [7, 1]. Furthermore, it was claimed that the attack
1 In such an attack, an adversary given a challenge ciphertext C attempts to determine

the underlying plaintext P = D(C) by submitting different ciphertexts C
′ to a

decryption oracle that returns D(C ′).



could be implemented easily. We explore these claims in more detail; in partic-
ular, we attempt to implement the described attacks against GnuPG (available
at http://www.gnupg.org) and PGP (available at http://www.pgpi.org) and
thereby ascertain whether the attacks do in fact represent a serious concern. Our
findings may be summarized as follows:

– We have successfully implemented the attack against GnuPG and PGP when
files or messages are sent without compression.

– If compressed files are sent (e.g., a .zip file is sent using PGP), the attack
still works and may be used to recover the original data.

– On the other hand, compression done by the encryption software itself (when
an uncompressed file is sent) causes the attack to fail. In the case of GnuPG
(when compression is used), the attack fails only due to the presence of
a message integrity check which is not explicitly required2 as part of the
OpenPGP specification [3]. Without the integrity check, the attack succeeds
100% of the time.

– Implementations which strictly follow the OpenPGP specification [3] are
vulnerable to the attack even when the message is compressed during en-

cryption. As it turns out, the actual implementations of PGP and GnuPG
deviate from this specification in significant ways, thereby (fortuitously) foil-
ing the attack.

Our results lead us to suggest a number of changes to the OpenPGP specification.
We review the arguments of [6] as to why chosen-ciphertext attacks might be

feasible in the specific context of encrypted e-mail. Imagine a user who has con-
figured his software to automatically decrypt any encrypted e-mails he receives.
An adversary intercepts an encrypted message C sent to the user and wants to
determine the contents P of this message. To do so, the adversary creates some
new C ′ and sends it to the user; this message is then automatically decrypted by
the user’s computer and the user is presented with the corresponding message
P ′. To the user, P ′ appears to be garbled; the user therefore replies to the adver-
sary with, for example, “What were you trying to send me?”, but also quotes the

“garbled” message P ′. Thus, the user himself unwittingly acts as a decryption
oracle for the adversary. Using information obtained in this way, the adversary
may be able to determine the original message.

2 Overview

The term “PGP” is an all-encompassing name for several implementations of
an email encryption program first written as freeware by Phil Zimmerman in
1991 [5, 8]. PGP 2.6.2 was the first widely available and widely ported version,

2 At the time this is written, RFC 2440 is being revised; future drafts may require the
presence of a message integrity check [2]. Note, however, that if full inter-operability
with older versions of PGP is desired then a message with no integrity check (as op-
posed to an invalid one) will be accepted and the attack described here can proceed.



followed shortly thereafter by versions fixing previous bugs as well as “interna-
tional” versions free from patent and export-law restrictions. There were several
commercial PGP 4.x releases which were compatible with the 2.6.x versions.
PGP 5.0 and subsequent releases were GUI based (the previous versions being
command line only); note that PGP 2.x and PGP 5.x versions are considered
incompatible. An IETF working group was later formed to standardize the PGP
message format, resulting in RFC 2440 [3]. GnuPG is a free, open source, RFC
2440 compliant implementation. Most of the different versions of PGP, as well
as GnuPG, have a fairly significant user base.

2.1 The Attack

We explicitly consider attacks on PGP 2.6.2 and GnuPG. We refer the reader
to [5, 8, 3] for a more in-depth description of the protocols; here, we merely
provide a high-level description necessary for a proper understanding of the
attack. Specifically, the attack exploits the symmetric-key modes of encryption
used; therefore, only this detail of the protocol is presented. Further details of
the attack can be found in [6].

PGP messages are encapsulated in packets. A PGP packet has a header
section and a data section. The header holds information such as the packet
type and length, among other things. The data section contains the payload of
the packet, which is dependent on the packet type. The specifics of the packet
format are slightly different in various versions of PGP and in the OpenPGP
specification, we focus here on PGP 2.6.2 packets.

Consider an e-mail message (or file) M . PGP encrypts the message as follows:

1. A random “session-key” K is generated, encrypted with the recipient’s pub-
lic key pk, and encapsulated in a public-key encrypted session key packet
(PKESKP). The output can be represented as follows:

〈PKESKP HEADER, Epk(K)〉.

2. Message M is encapsulated in a literal data packet (LDP), resulting in:

LDP = 〈LP HEADER, M〉.

3. The LDP is compressed using the deflate algorithm [4], and becomes the
payload of a compressed data packet (CDP):

CDP = 〈CP HEADER,deflate(LDP )〉.

4. The CDP is encrypted with a symmetric-key encryption algorithm (i.e., block
cipher) and key K, using cipher feedback (CFB) mode (described below).
This gives ciphertext C1, C2, C3, . . .. The ciphertext is encapsulated in a
symmetrically encrypted data packet (SEDP) as follows:

〈SEDP HEADER, C1, C2, C3, . . .〉.



5. The following message is sent to the recipient:

〈PKESKP HEADER, Epk(K)〉〈SEDP HEADER, C1, C2, C3, . . .〉.

The recipient, reversing the above steps, uses his private key to compute K;
given K, the recipient can then determine the compressed message which is
decompressed to return the original message M .

A mode of encryption is necessary in step 4 (above) in order to encrypt CDPs
longer than a single block. GnuPG and PGP use a variation of CFB mode which
we now describe. Before encryption, the plaintext (i.e., the CDP) is prepended
by a 10-octet string. The first 8 octets are random, and the 9th and 10th octets
are copies of the 7th and 8th octets. This prepended data serves both as a
weak “integrity check” and as the initialization vector for the cipher. We denote
the resulting text by R1, R2, P1, . . . , Pk where R1 represents the first 8 octets
prepended to the CDP, R2 represents the last 2 octets (the “key check octets”)
prepended to the CDP, and P1, P2, . . . , Pk represents the CDP itself. Encryption
using a CFB-like mode of encryption then proceeds as follows:3

Encryption: Given R1, R2, P1, P2, . . . , Pk, compute:
C1 = R1 ⊕ EK(064)
C2 = R2 ⊕ EK(C1)[0,1] (note: C2 and R2 are 2 bytes long)
IV = C1[2−7] ◦ C2

C3 = P1 ⊕ EK(IV )
for i = 2 to k:

Ci+2 = Pi ⊕ EK(Ci+1)
Output: C1, C2, . . . , Ck+2

Decryption: Given ciphertext C1, C2, . . . , Ck+2, compute :
R1 = C1 ⊕ EK(064)
R2 = C2 ⊕ EK(C1)[0,1] (note: C2 and R2 are 2 bytes long)
IV = C1[2−7] ◦ C2

P1 = C3 ⊕ EK(IV )
for i = 2 to k:

Pi = Ci+2 ⊕ EK(Ci+1)
if (R2 == R1[6,7])

Output: P1, P2, P3 . . . , Pk

else
Error

As described previously [6], a single-message chosen-ciphertext attack can
seemingly be used to decrypt any given ciphertext (for simplicity, we omit the
PGP headers that are attached to the messages; these will be discussed in more
detail later). Given ciphertext < Epk(K), C1, . . . , Ck >, to obtain the value of
plaintext block Pi (i > 1) one does the following:

3
EK(·) represents application of the block cipher using session-key K. The notation
B[0,1] represents the first and second bytes of a block B, and the notation B[2−7]

represents the third through the eighth bytes of a block B.



1. Choose a (random) 64-bit number r.
2. Submit the ciphertext: 〈Epk(K), C1, C2, Ci+1, r〉.
3. Receive back the decryption P ′

1, P
′

2, where P ′

2 = r ⊕ EK(Ci+1).
4. Compute Pi = P ′

2 ⊕ r ⊕ Ci+2.

(A similar attack may be used to determine P1.)
Other chosen ciphertext attacks are also possible. For example, submitting:

< Epk(K), C1, C2, C3, r1, . . . , Ck, rk−2 >,

where r1, . . . , rk−1 are random 64-bit strings, allows the adversary, in theory, to
compute the entire contents of the original message.

As described, these attacks seem devastating to the secrecy of encrypted
messages. In practice, however, one might expect certain complications to arise.
We discuss this in the remainder of the paper.

3 Uncompressed Data

When the message data is not compressed by PGP before encryption (e.g., the
compression option is turned off by the user), the encrypted message is simply
an encrypted LDP. Note that if the original plaintext is already compressed (i.e.,
the plaintext is a zip file), it will be treated as literal data and will not be re-
compressed by PGP.4 We demonstrate here that the chosen-ciphertext attack
as described in the previous section does succeed in recovering the plaintext
message in these cases.

The diagram below represents a PGP message without compression. In the
diagram, shaded portions represent encrypted data. The numbers along the bot-
tom of the diagram represent the lengths (in bytes) of the corresponding fields. A
“?” represents a field of variable length (for example, the length of the “Name”
field depends on the value contained in the “Name Length” field). CTB is short-
hand for cipher type byte, a PGP construct used to determine the type of the
packet being processed. The “Name Length” field is a single byte that deter-
mines the length of the following “Name” field; this second field contains the
name of the plaintext file. See [3] for more details of PGP packet formats.

NON-COMPRESSED PGP MESSAGE

L
E
N
G
T
H

C
T
B

PUBLIC
KEY

ENCRYPTED
SESSION
KEY DATA

L
E
N
G
T
H

C
T
B

RANDOM
BYTES

LAST
TWO

RANDOM
BYTES

C
T
B

L
E
N
G
T
H

M
O
D
E

NAME
LENGTH

T
S
T
A
M
P

D
A
T
A
1

D
A
T
A
2

D
A
T
A
3

D
A
T
A
4

D
A
T
A
5

D
A
T
A
6

N
A
M
E

?11212121 28? 4 8 8 8 8 8 8

PKESKP PACKET

SEDP PACKET

LDP PACKET

4 Although compressed files are re-compressed in GnuPG 1.0.6, this “flaw” was sub-
sequently corrected in GnuPG 1.0.7 (thereby allowing the attack).



An attacker can follow the procedure given in Section 2.1 to produce a cipher-
text that, when decrypted and returned, will allow the contents of the message to
be determined. The diagram below represents the ciphertext that allows recovery
of the entire message:

CHOSEN CIPHERTEXT MESSAGE (NON-COMPRESSED DATA)

L
E
N
G
T
H

C
T
B

PUBLIC
KEY

ENCRYPTED
SESSION
KEY DATA

L
E
N
G
T
H

C
T
B

RANDOM
BYTES

LAST
TWO

RANDOM
BYTES

C
T
B

L
E
N
G
T
H

M
O
D
E

NAME
LENGTH

N
A
M
E

T
S
T
A
M
P

D
A
T
A
1

R
2

D
A
T
A
2

R
3

D
A
T
A
3

R
1

11 2 ? 82 2 1 1 1 1 ? 4 8 8 8 8 8 8

If this ciphertext is decrypted and somehow made available to the adversary, the
first half of the original message can be obtained via the procedure described
in Section 2.1. Note that PGP will not return more data than the number of
bytes described in the “Length” field of the header, while inserting random
blocks effectively doubles the size of the message. Therefore, a straightforward
implementation of the attack will require the adversary to obtain decryptions
of two ciphertexts in order to recover the entire message (i.e., the adversary
can obtain about half the plaintext with each decrypted ciphertext he receives).
Alternately, the adversary can try to modify the “Length” field. The actual
length of the packet is known, so by manipulating the bits of the “Length” field
in the encrypted data the adversary can potentially set the value to the length
of the modified ciphertext. This is possible, however it causes the next block
of data to be garbled unpredictably (thereby preventing the adversary from
learning the message corresponding to that block). Furthermore, this approach
will be effective only if the lengths of the modified ciphertext and the original
ciphertext lie in the same range; i.e., the lengths are described by the same
number of bytes. Otherwise, the attack will fail because the adversary will have
to insert bytes into the encrypted header of a PGP packet, which will result in
unpredictable data.

Another minor complication is that PGP checks the value of the CTB after
decryption. If the value of this byte is not valid, PGP will exit with an error
message. Decryption will also fail if the “Mode” byte is not recognized. Thus,
when constructing the chosen ciphertext message, the adversary must take care
not to garble the first block of the message which contains the header for the
Literal Data Packet. This is taken into account in the above diagrams.

Finally, PGP will read the number of bytes given in the “Name Length”
field from the “Name” field; these bytes will not appear in the output plain-
text (rather, they are used to derive a name for the file that will contain the
plaintext). If the attacker inserts data in the encrypted packet before the end
of the original filename, or if the filename does not end on a block boundary,
the decrypted message will not properly align with the attacker’s random data.
This is so because the beginning of the decrypted chosen ciphertext will actu-
ally contain part of the filename field that is not normally output by PGP. This
minor problem can be avoided by repeating the packet header blocks in the cho-



sen ciphertext and then finding the proper alignment by shifting the decrypted
message (i.e., by dropping off one byte at a time from the beginning of the mes-
sage), thus repeatedly trying the attack until the “Length field” (whose value
is known) is found. The alignment that allows determination of the “Length”
field also allows the rest of the data to be determined, and no additional chosen
ciphertext messages are required.

In summary, when the plaintext message is not compressed by PGP before
encryption or when the plaintext is itself a compressed file which is not further
compressed by PGP, a single-ciphertext or two-ciphertext attack can be used
to determine the entire contents of the original message. A program (in Java)
implementing the single-ciphertext and two-ciphertext versions of the attack is
available at:

http://www.cs.umd.edu/~jkatz/pgpAttack.tar.gz

Because PGP and GnuPG inter-operate, the above attack also works against
a message sent via GnuPG when compression is not used. The code has been
tested with PGP versions 2.6.2 and 2.6.3 as well as GnuPG version 1.0.6.

4 Compressed Data

Both GnuPG and PGP compress data by default before encrypting it (unless
the data is already compressed, as described above). Compression further com-
plicates the attack because a compression algorithm is applied before encryption
and after decryption. The difficulties arise from the fact that the programs use
packet headers included in the encrypted data for further processing. Modifica-
tion of these headers will usually cause the attack to fail because the program
cannot process the garbled headers. Additionally, GnuPG uses a message digest
check to protect the integrity of the data. While a minor modification of the at-
tack succeeds against GnuPG , the digest check fails and causes the program to
output a warning message that would likely cause the user to become suspicious
and fail to return the decrypted chosen ciphertext message.

4.1 PGP

A PGP message with compressed data is formed as follows:

PGP COMPRESSED MESSAGE

L
E
N
G
T
H

C
T
B

PUBLIC
KEY

ENCRYPTED
SESSION
KEY DATA

L
E
N
G
T
H

C
T
B

RANDOM
BYTES

LAST
TWO

RANDOM
BYTES

C
T
B

A
L
G

COMPRESSED DATA

1 1 ? 1 1 8 2 1 1 ?

The compressed data is comprised of raw deflate [4] blocks, the result of ap-
plying the deflate algorithm to a PGP literal packet containing the plaintext.



The deflate algorithm compresses data via a two-step process. First, it scans
the data and finds “backward matches” or sections of the data that are redun-
dant. These are represented by 〈length, distance〉 pairs that describe where in
the data stream the redundancy occurs. Then, both the symbols in the data
and the 〈length, distance〉 pairs are replaced by Huffman codes. Huffman coding
essentially replaces each literal token with an encoded string, where literals that
are more common in the actual data are given shorter codes. The “Huffman tree”
is the mapping between literals and Huffman codes. This mapping is determined
based on statistical analysis of the literals in the data, or is predefined by the
algorithm.

The deflate RFC [4] states the following:

Any data compression method involves the reduction of redundancy in
the data. Consequently, any corruption of the data is likely to have severe
effects and be difficult to correct.

The chosen-ciphertext attack requires the insertion of random blocks into the
encrypted data. Insertion or modification of any data in an encrypted stream
will cause the plaintext of the next block to be random. Thus, in general, it is
difficult to predict the effects of random changes in a compressed file because
the compressed data is very dependent on the original data. Usually, random
data in a compressed file will corrupt the internal state of the inflater during
decompression and cause the algorithm to fail — the more random data inserted,
the higher the probability that decompression will fail. If the decompression fails,
a decryption of the chosen-ciphertext message is not produced and the attack
cannot continue.

Based on some heuristic tests on about 400 text files, insertion of a single 64-
bit block or modification of a block at random will cause a decompression error
roughly 90% of the time. The larger the original message, the more likely it de-
compresses improperly after modification. Files that did decompress successfully
were either severely truncated or were very similar to the original message.

It is claimed in [6] that if the attacker obtains the decompressed output
resulting from the attack, he can re-compress it and continue the attack. This
is not actually the case. Recall that the attacker needs the decryption of the
chosen ciphertext in order to perform the attack. Normally, the payload of a
PGP Session Key Encrypted Data Packet is an LDP which has been compressed
and then encrypted:

C1, C2, . . . , Ck = EK(deflate(LDP)).

Decryption and decompression proceed as follows:

P1, P2, . . . , Pk = inflate(DK(C1, C2, . . . , Ck)).

When DK(C1, C2, . . . , Ck) is in fact a valid output of the deflate algorithm,
we do indeed have

deflate(inflate(DK(C1, C2, . . . , Ck))) = DK(C1, C2, . . . , Ck).



On the other hand, when the ciphertext is modified (as it is when the chosen
ciphertext is constructed), DK(C ′

1, . . . , C
′

k) is no longer a valid output of the
deflate algorithm. The decompression process assumes that its input consists
of Huffman codes that will translate into the appropriate literals for whatever
Huffman tree is in use at that point of the decompression; in other words, in-

flate expects to run on input that is the valid output of the deflation algorithm.
Thus (with overwhelming probability),

deflate(inflate(DK(C ′

1, . . . , C
′

k))) 6= DK(C ′

1, . . . , C
′

k)

and the attack cannot proceed. If the decompression does produce a result that
is not badly truncated or is very similar to the original message, it may be
possible to reproduce at least part of DK(C ′

1, . . . , C
′

k) using the decompressed
output and knowledge of where the random insertion was made. This requires
careful analysis of the corrupted compressed message, which is difficult and in
many cases impossible.

4.2 GnuPG

A variant of the chosen-ciphertext attack is partially successful against GnuPG,
although the effectiveness of the attack is mitigated by the presence of an in-
tegrity check on the data. GnuPG uses slightly longer headers on compressed
data, and these headers are predictable. This allows an attacker to change the
header bytes of the data to those of a literal packet (by “flipping” bits in the en-
crypted data that correspond to bits in the known “underlying” value), although
the data section is left alone. When the data is decrypted, the algorithm will not
attempt to decompress the result because the compressed packet headers have
been changed to literal packet headers. The decrypted chosen ciphertext will
thus be the compressed version of the original message. Since compressed data
bears no resemblance to the original data, the recipient will not be suspicious of
the decrypted data and is likely to send it back.

The key to this variant of the attack is that two extra bytes of the encrypted
data are predictable under GnuPG’s default compression algorithm, where the
original message is as follows:

GPG COMPRESSED MESSAGE

L
E
N
G
T
H

C
T
B

PUBLIC
KEY

ENCRYPTED
SESSION
KEY DATA

L
E
N
G
T
H

C
T
B

RANDOM
BYTES

LAST
TWO

RANDOM
BYTES

C
T
B

A
L
G

M
E
T
H
O
D

F
L
A
G
S

COMPRESSED DATA

1 2 ? 1 2 8 2 1 1 1 1 ?

The fact that the “METHOD” and “FLAGS” bytes are known in this case allows
the attacker to flip bits in the underlying data to change the compressed packet
header to a literal packet header, as in the diagrams detailing uncompressed data
messages above.



In order to obtain the entire message, the attacker can set the filename length
header to the blocksize of the algorithm and append the entire original segment
of encrypted data to the (modified) first block as follows:

GPG CHOSEN CIPHERTEXT MESSAGE

L
E
N
G
T
H

C
T
B

PUBLIC
KEY

ENCRYPTED
SESSION
KEY DATA

L
E
N
G
T
H

C
T
B

RANDOM
BYTES

LAST
TWO

RANDOM
BYTES

N
E
W

C
T
B

L
E
N
G
T
H

M
O
D
E

NAME
LENGTH

ENTIRE ORIGINAL MESSAGE

RANDOM
BYTES
(MINUS
BYTES
0,1)

LAST
TWO

RANDOM
BYTES

1 2 ? 1 2 8 2 11 1 1 6 2 ?

= modified encrypted data

The result of decryption will be one block of random data, followed by the
compressed packet. Upon receipt of the decrypted chosen ciphertext message,
the attacker can strip off the garbage data and headers, and decompress the
data to obtain the original message.

There is one flaw with the above approach. By default, GnuPG includes a
message digest on the encrypted data. Since this check is likely to fail for the
ciphertext constructed by the attacker, a warning message will be relayed to the
user. This might make the user suspicious enough not to send the message back
(thereby preventing the chosen-ciphertext attack). It should be noted, however,
that the message digest is not used when GnuPG inter-operates with PGP,
and this might allow the attack. When inter-operating with PGP, though, ZIP
compression is used (instead of ZLIB); we were unable to implement the attack
when ZIP compression is used.

5 OpenPGP Vulnerabilities

The OpenPGP specification is written as a base specification for security soft-
ware inter-operability. Most implementations of the specification are written with
inter-operability with PGP as a basic goal, and are built along similar lines. An
application written “directly from specification” would potentially be vulnera-
ble to a chosen ciphertext attack due to a difference in the specification and the
actual operation of PGP. In defining constants allowed in the “Algorithm” field
of a compressed data packet, the specification states the following [3]:

ID Algorithm

-- ---------

0 - Uncompressed

1 - ZIP (RFC 1951)

2 - ZLIB (RFC 1950)

100 to 110 - Private/Experimental algorithm.

Implementations MUST implement uncompressed data. Implementations

SHOULD implement ZIP. Implementations MAY implement ZLIB.



The specification states that compliant implementations MUST implement
uncompressed as one of their algorithms; that is, a compressed packet with an
“Algorithm” field of 0 must be acceptable. In practice, neither GnuPG or PGP
actually implement this; uncompressed data is never encapsulated in a com-
pressed data packet. If this part of the specification were followed, however, an
attack similar to the one described for GnuPG would be successful against that
implementation — the attacker could change the encrypted compression algo-
rithm header and obtain the compressed data as if it were plaintext. The attacker
could then simply decompress that data and retrieve the original message. There
is little chance that the user would recognize the data as “similar” to the actual
message, because it would be in compressed format. The widely used programs
(GnuPG and PGP) that claim to conform to the specification actually do not
in this instance, and therefore fortuitously escape vulnerability to the attack.

In general, the OpenPGP standard presents compression as optional. An
implementation that did not provide compression would be vulnerable to the
non-compressed attack as described.

It is also important to note that the OpenPGP standard does not explic-
itly require an integrity check on the contents of an encrypted message.5 An
implementation of GnuPG which did not include the integrity check would be
vulnerable to chosen-ciphertext attack. GnuPG includes this integrity check by
defining their own packet type which is not included in the OpenPGP standard.
When this packet type is encountered by the program, it actually uses a slightly
different chaining mode (the re-sync step is omitted). This prevents an attacker
from changing the headers on a packet with an integrity check to make it look
like a non-integrity checked packet: such a packet will not decrypt properly due
to the difference in chaining modes used. This is another example of an exten-
sion to the OpenPGP standard that allows the program to avoid vulnerability
to chosen-ciphertext attacks in practice.

6 Recommendations

If compression is not used, or if compressed files are sent, the chosen-ciphertext
attack described here succeeds against both GnuPG and PGP. GnuPG is also
vulnerable if the user does not view the warning message that the encrypted
data fails the message integrity check. In “batch mode” operation this warning
would probably go unnoticed by the user; since in this case the decrypted file
is still produced, the attack would succeed. Additionally, some of the front-end
programs that use GnuPG do not propagate this warning to the user. In this
case, the attack is definitely feasible.

Users of GnuPG and PGP should be aware that compression should not be
turned off. Compression is turned on by default, but a user sending a compressed
file will still be at risk from a chosen-ciphertext attack.

The OpenPGP standard, as written, is vulnerable to chosen ciphertext attack
due to the following:

5 But see footnote 2.



1. No explicit requirement of a message integrity check.
2. Optional implementation of compression.
3. Requiring acceptance of “uncompressed” as a valid form of compression.

The first problem is basically a recognized one that has been solved in prac-
tice by those implementing the algorithm. On the other hand, precisely because
the problem is universally recognized by those “in the know”, it is time for the
RFC to reflect this. Requiring “uncompressed” to be recognized as a valid form
of compression is a minor, but clear, problem with the standard itself. Com-
pression algorithms already allow for inclusion of non-compressed data and the
standard should not try to deal with this issue because it introduces a flaw. Luck-
ily the widely used programs that (generally) conform to the standard ignore
this requirement; the standard should still be fixed so as not to cause problems
in new implementations.

Developers of front-end software for GnuPG need to propagate integrity vi-
olation warnings to the users. This is important not only for protection against
chosen ciphertext attacks — integrity protection is useless if the user is not
warned when it has been violated!

Acknowledgments

Thanks to Jon Callas and David Shaw for their extensive comments and helpful
suggestions.

The work described in this paper was initiated by a project done by the first
and third authors as part of the course W4995: Introduction to Cryptography

taught at Columbia University by the second author. The third author’s name
was omitted from the published version of this paper due to an unfortunate
oversight.

References

1. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions
of Security for Public-Key Encryption Schemes. Crypto ’98.

2. J. Callas and D. Shaw. Personal communication, July 2002.
3. J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. “OpenPGP Message For-

mat,” RFC 2440, Nov. 1998.
4. L.P. Deutsch. “DEFLATE Compressed Data Format Specification version 1.3,”

RFC 1951, May 1996.
5. S. Garfinkel. PGP: Pretty Good Privacy, O’Reilly & Associates, 1995.
6. J. Katz and B. Schneier. A Chosen Ciphertext Attack against Several E-Mail En-

cryption Protocols. 9th USENIX Security Symposium, 2000.
7. M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure against Chosen

Ciphertext Attacks. STOC ’90.
8. P. Zimmerman. The Official PGP User’s Guide, MIT Press, 1995.


