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Abstra
t. We formalize the notion of a 
ryptographi
 
ounter, whi
h

allows a group of parti
ipants to in
rement and de
rement a 
rypto-

graphi
 representation of a (hidden) numeri
al value privately and ro-

bustly. The value of the 
ounter 
an only be determined by a trusted

authority (or group of authorities, whi
h may in
lude parti
ipants them-

selves), and parti
ipants 
annot determine any information about the

in
rement/de
rement operations performed by other parties.

Previous eÆ
ient implementations of su
h 
ounters have relied on fully-

homomorphi
 en
ryption s
hemes; this is a relatively strong requirement

whi
h not all en
ryption s
hemes satisfy. We provide an alternate ap-

proa
h, starting with any en
ryption s
heme homomorphi
 over the ad-

ditive group Z

2

(i.e., 1-bit xor). As our main result, we show a general

and eÆ
ient redu
tion from any su
h en
ryption s
heme to a general


ryptographi
 
ounter. Our main redu
tion does not use additional as-

sumptions, is eÆ
ient, and gives a novel implementation of a general


ounter. The result 
an also be viewed as an eÆ
ient 
onstru
tion of a

general n-bit 
ryptographi
 
ounter from any 1-bit 
ounter whi
h has

the additional property that 
ounters 
an be added se
urely.

As an example of the appli
ability of our 
onstru
tion, we present a


ryptographi
 
ounter based on the quadrati
 residuosity assumption

and use it to 
onstru
t an eÆ
ient voting s
heme whi
h satis�es universal

veri�ability, priva
y, and robustness.

1 Introdu
tion

1.1 Cryptographi
 Counters

In this paper we present an eÆ
ient and se
ure proto
ol for 
al
ulating the sum

of integers, where ea
h integer is held privately by a single parti
ipant. Although

it is 
lear that this 
an be a
hieved via the 
ompleteness results for multi-party


omputation (see [14℄ for a 
omplete review of multi-party 
omputation and



related results), su
h 
onstru
tions are only of theoreti
al interest as they are

too ineÆ
ient to be of pra
ti
al use. In order to 
onstru
t our se
ure addition

proto
ol, we introdu
e an abstra
tion we 
all a 
ryptographi
 
ounter that may

be of independent interest. In parti
ular, su
h 
ounters may have a variety of

appli
ations, espe
ially as subroutines in larger multi-party 
omputations. We

give a formal de�nition of 
ryptographi
 
ounters, and provide a 
onstru
tion

based on any en
ryption s
heme homomorphi
 over the additive group Z

2

.

Informally, a 
ryptographi
 
ounter is a publi
 string whi
h 
an be viewed as

an en
ryption of a value su
h that the value is hidden from all parti
ipants ex
ept

a trusted authority (who holds some se
ret key). Only the trusted authority 
an

de
rypt and thereby determine the value of the 
ounter, whereas all parti
ipants

have the ability to in
rement or de
rement (update) the 
ounter by an arbitrary

amount. Information about updates (e.g., whether the 
ounter was in
remented

or de
remented) is kept hidden from all other parti
ipants. We also 
onsider

restri
ted 
ryptographi
 
ounters for whi
h the set of legal update operations is


onstrained in some publi
ly-known way.

Previous 
onstru
tions of 
ryptographi
 
ounters (in the 
ontext of voting

s
hemes) have relied on what we 
all fully-homomorphi
 en
ryption. Informally,

this is an en
ryption s
heme for whi
h, for any n

0

> 0, there is some 
hoi
e of

the se
urity parameter su
h that the resulting en
ryption is homomorphi
 over

(the additive group) Z

n

, where n � n

0

. It is 
lear how a 
ryptographi
 
ounter


an be 
onstru
ted given this strong property (the diÆ
ult aspe
ts of previous


onstru
tions were providing eÆ
ient proofs of validity and a
hieving threshold

de
ryption). In this paper, we provide a 
onstru
tion of an n-bit 
ryptographi



ounter based on any 1-bit 
ryptographi
 
ounter that also allows se
ure addition

(mod 2) of multiple 
ounters. This immediately implies a 
onstru
tion from any

en
ryption s
heme homomorphi
 overZ

2

. As a 
on
rete example, we present an

eÆ
ient n-bit 
ounter based only on the quadrati
 residuosity assumption.

Addition is a useful fun
tion to 
ompute privately, as many of the 
urrently-

proposed appli
ations of se
ure multi-party 
omputation rely heavily on sum-

ming se
ret values held by di�erent individuals. It has parti
ular relevan
e to the

problem of se
ure ele
troni
 voting, in whi
h ea
h parti
ipant holds a vote whi
h

is either 0 or 1, and the parti
ipants wish to determine the tally without revealing

individual votes. As an example of the appli
ability of 
ryptographi
 
ounters, we

use them to build a se
ure voting s
heme and 
ompare it to previously-proposed

solutions. In parti
ular, ours is the �rst eÆ
ient 
onstru
tion of a voting s
heme

whi
h is not based on fully-homomorphi
 en
ryption.

1.2 Se
ure Ele
troni
 Voting

An ele
troni
 voting s
heme is a proto
ol allowing voters to 
ast a vote by

intera
ting with a set of authorities who 
olle
t the votes, tally them, and publish

the �nal result. There are a variety of properties whi
h may be desired of an

ele
troni
 voting s
heme; however, the 
ryptographi
 literature has traditionally

fo
used on the following three requirements:



Priva
y ensures that an individual's vote is kept hidden from (any reasonably-

sized 
oalition of) other voters and even the authorities themselves.

UniversalVeri�abilitymeans that any party, in
luding a passive observer, 
an

be 
onvin
ed that all votes 
ast were valid and that the �nal tally was 
omputed


orre
tly.

Robustness guarantees that the �nal tally 
an be 
orre
tly 
omputed even in

the presen
e of faulty behavior of a number of parties.

It is furthermore desirable to minimize the intera
tion between parties. In par-

ti
ular, voters should not have to intera
t with ea
h other to 
ast a vote or

(ideally) to prove validity of votes, and the authorities should be able to remain

o�-line until the ele
tion is 
on
luded. Other features are not 
onsidered in the

present work. For example, information-theoreti
 priva
y is sometimes required

[8℄, while we only require 
omputational priva
y. Re
eipt-freeness [2℄ and pre-

venting vote-dupli
ation 
an be a
hieved by other means (see, for example, [17℄)

and are not 
onsidered here.

Many voting s
hemes meeting the above requirements have been proposed

[6,3, 4, 8, 9, 23, 10℄. However, all previously-known s
hemes a
hieving universal

veri�ability rely on fully-homomorphi
 en
ryption s
hemes, where the homomor-

phism is over additive group Z

n

and n is larger than the number of voters (our

use of the term \fully-homomorphi
" is explained above). One typi
al paradigm

is as follows: say voter i wishes to 
ast vote v

i

, where, for a valid vote, we have

v

i

2 f0; 1g. To vote, voter i publi
ly posts

1

E

pk

(v

i

), the en
ryption of v

i

under

some publi
 key established by the set of authorities. When everyone has voted,

the authorities 
ompute the produ
t of the en
ryptions (whi
h 
an be publi
ly


omputed) and de
rypt the result; this gives the 
orre
t �nal tally sin
e:

D

sk

(E

pk

(v

1

) � � �E

pk

(v

N

)) = v

1

+ � � �+ v

N

;

where equality holds by the homomorphi
 properties of the en
ryption s
heme.

Depending on the level of trust in the authorities, they may also provide a (pub-

li
ly veri�able) proof that de
ryption was done 
orre
tly. In this way, everyone

is assured that all votes were 
orre
tly 
ounted.

Many examples of fully-homomorphi
 en
ryption s
hemes are known (for ex-

ample: [12, 6, 21℄). The voting s
hemes of [6, 3, 4℄ are based on the r-th residuosity

assumption, those of [8, 9, 23℄ are based on the dis
rete logarithm assumption in

prime groups, and the s
heme of [10℄ is based on hardness of de
iding residue


lasses in Z

�

N

2

. Even so, it is interesting to determine the minimal assumptions

under whi
h an eÆ
ient voting proto
ol 
an be 
onstru
ted.

We show how priva
y and universal veri�ability 
an be a
hieved without

fully-homomorphi
 en
ryption. Our 
onstru
tion uses an n-bit 
ounter whi
h, in

turn, is 
onstru
ted from any en
ryption s
heme homomorphi
 overZ

2

(i.e., the

1

This might be a

ompanied by a proof of validity, but for simpli
ity we fo
us here

on that portion of the proto
ol whi
h relies on the homomorphi
 properties of the

en
ryption.



Size of Vote + Proof Voter Computation Authority Computation

[8℄ O(k

1

M) O(k

3

1

M) O(k

3

1

L)

[9℄ O(k

1

) O(k

3

1

) O(k

3

1

L)

Present work O(k

1

k

2

log L) O(k

2

1

k

2

log L) O(k

2

1

log L+ L)

Table 1. EÆ
ien
y of some voting s
hemes. L is the number of voters,M is the number

of authorities, k

1

is a se
urity parameter, and 2

�k

2

is a bound on the probability of


heating (in [8, 9℄, the probability of 
heating is 2

�k

1

). Computation is measured in

bitwise operations, assuming multipli
ation of k-bit numbers requires O(k

2

) operations.

1-bit xor operation). Using as a spe
i�
 example the well-studied en
ryption

s
heme based on the hardness of de
iding quadrati
 residuosity [16℄, we show

how to a
hieve robustness as well.

Often, basing a result on a weaker assumption results in an impra
ti
al

s
heme. However, our resulting voting s
heme is eÆ
ient enough to be pra
ti
al.

A 
omparison of the eÆ
ien
y of our 
onstru
tion with those of [8,9℄ appears in

Table 1. Our simplest solution, while being both size- and 
omputation-eÆ
ient,

requires sequential exe
ution and hen
e O(L) rounds (as 
ompared with previ-

ous solutions whi
h require O(1) rounds). We dis
uss ways of dealing with this

issue in Se
tion 5.

2 De�nitions

In this se
tion we formalize the notion of a 
ryptographi
 
ounter. Although

related notions have been folklore in the 
ryptographi
 
ommunity (parti
ularly

in the 
ontext of ele
troni
 voting), a formal de�nition has, to the best of our

knowledge, not previously appeared.

Counters. In order to more easily de�ne a 
ryptographi
 
ounter, we �rst need

a formal de�nition of a 
ounter.

De�nition 1. An n-
ounter 
onsists of a set S along with a pair of algorithms

(D;T ) in whi
h:

{ S = fs

1

; : : :g represents the set of states of the 
ounter.

{ D, the de
oding algorithm, is a deterministi
 algorithm whi
h takes as input

a state s 2 S and returns a number i 2 Z

n

. This de�nes a mapping from

states in S to numbers in the range [0; n� 1℄.

{ T , the transition algorithm, is a probabilisti
 algorithm whi
h takes as input

a state s 2 S and an integer i 2Z

n

and returns a state s

0

2 S. This fun
tion

de�nes legal update operations on the 
ounter.

We require that for all s 2 S and i 2Z

n

, if s

0

 T (s; i), then D(s

0

) = D(s) +

i mod n.

Note that subtra
tion of integer i 
an be done by simply 
omputing the inverse

of i inZ

n

and adding �i using the transition algorithm.



Cryptographi
 Counters. We now turn to the de�nition of a 
ryptographi



ounter. We �rst de�ne its 
omponents, and follow this with de�nitions of se-


urity against two types of adversaries: honest-but-
urious and mali
ious. All

algorithms are assumed to run in time polynomial in the se
urity parameter k,

and n is �xed independently of k.

De�nition 2. A 
ryptographi
 n-
ounter is a triple of algorithms (G; D; T ) in

whi
h:

{ G, the key generation algorithm, is a probabilisti
 algorithm that on input

1

k

outputs a publi
 key/se
ret key pair ( pk,sk) and a string s

0

. The se
ret

key, in turn, impli
itly de�nes

2

an asso
iated set of states S

sk

. It is the 
ase

that s

0

2 S

sk

.

{ D, the de
ryption algorithm, is a deterministi
 algorithm that takes as input

a se
ret key sk and a string s. If s 2 S

sk

, then D outputs an integer i 2Z

n

.

Otherwise, D outputs ?.

{ T , the transition algorithm, is a probabilisti
 algorithm that takes as input

the publi
 key pk, a string s, and an integer i 2Z

n

and outputs a string s

0

.

For any ( pk, sk) output by G(1

k

), de�ne D

0

= D(sk; �) and T

0

= T (pk; �; �). Then

we require that the set S

sk

along with algorithms (D

0

; T

0

) de�ne an n-
ounter.

Furthermore, we require that D

0

(s

0

) = 0 (this represents initialization of the


ounter to 0).

Se
urity (Honest-but-Curious). We brie
y des
ribe the atta
k s
enario

before giving the formal de�nition. Adversary A is given the publi
 key and the

initial state s

0

. The adversary then outputs

3

a sequen
e of integers i

1

; : : : ; i

`

2

Z

n

. The state is updated a

ordingly; that is, the transition algorithm T is run

` times, generating s

1

; : : : ; s

`

. All intermediate states are given to the adversary,

who then outputs x

0

; x

1

2 Z

n

. A bit b is sele
ted at random, and the 
ounter

is in
remented by x

b

to give state s

�

. The adversary, given s

�

, must then guess

the value of b.

De�nition 3. We say that 
ryptographi
 n-
ounter (G; D; T ) is se
ure against

honest-but-
urious adversaries if, for all poly-time adversaries A, the following

is negligible (in k):

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Pr

2

6

6

6

6

6

6

6

6

4

(pk; sk; s

0

) G(1

k

)

(i

1

; : : : ; i

`

) A(1

k

; pk; s

0

)

s

1

 T (pk; s

0

; i

1

); : : : ; s

`

 T (pk; s

`�1

; i

`

)

(x

0

; x

1

) A(s

1

; : : : ; s

`

)

b f0; 1g

s

�

 T (pk; s

`

; x

b

)

b

0

 A(s

�

)

: b

0

= b

3

7

7

7

7

7

7

7

7

5

� 1=2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

2

Note that membership in S

sk

may not be eÆ
iently de
idable when given only pk.

We require, however, that membership is eÆ
iently de
idable, given sk.

3

These integers may be 
hosen adaptively, but for simpli
ity we present the non-

adaptive 
ase here. Note that the 
onstru
tion of Se
tion 3.2 a
hieves se
urity against

an adaptive adversary as well.



Se
urity (Mali
ious). An honest-but-
urious adversary is restri
ted to hav-

ing the in
rement operations (whi
h he must distinguish between) performed

on a state distributed a

ording to the output of the transition algorithm T . A

mali
ious adversary, in 
ontrast, is allowed to sele
t the state to be in
remented

freely. In fa
t, we allow the adversary to sele
t any string to be in
remented

by T ; this allows us to deal with the 
ase in whi
h there is no eÆ
ient way to

determine whether a string s is a valid state (i.e., whether s 2 S

sk

).

De�nition 4. We say that 
ryptographi
 n-
ounter (G; D; T ) is se
ure against

mali
ious adversaries if, for all poly-time adversaries A, the following is negli-

gible (in k):

�

�

�

�

�

�

�

�

�

�

Pr

2

6

6

6

6

4

(pk; sk; s

0

) G(1

k

)

(s; x

0

; x

1

) A(1

k

; pk; s

0

)

b f0; 1g

s

�

 T (pk; s; x

b

)

b

0

 A(s

�

)

: b

0

= b

3

7

7

7

7

5

� 1=2

�

�

�

�

�

�

�

�

�

�

:

Verifiable Counters. It may sometimes be useful to verify whether tran-

sitions were indeed 
omputed 
orre
tly. For example, when using a 
ounter for

voting, it should be publi
ly veri�able that ea
h voter a
ted in a 
orre
t manner.

We therefore de�ne the notion of a veri�able 
ryptographi
 
ounter as follows:

De�nition 5. A veri�able 
ryptographi
 n-
ounter is a tuple (G; D; T; V ) su
h

that:

{ (G; D; T ) is a 
ryptographi
 n-
ounter.

{ V , the veri�
ation algorithm, is a probabilisti
 algorithm satisfying 
omplete-

ness and soundness for all (pk; sk) output by G, as follows:

1. (Completeness) For all s 2 S

sk

, if s

0

 T (pk; s; i) for some i 2Z

n

, then:

V (pk; s; s

0

) = 1:

(Note that V does not require i as input.)

2. (Soundness) For all s and all strings s

0

su
h that for all i, s

0

is not in

the range of T (pk; s; i), the following probability is negligible (in k):

Pr[V (pk; s; s

0

) = 1℄:

Restri
ted Counters. De�nitions 1, 2, and 5 may be modi�ed to allow for the

possibility that although the 
ounter 
an store values in Z

n

, update operations

are restri
ted to some subset ofZ

n

. We 
all 
ounters with this property restri
ted.

An illustrative example is a 
ounter used in a voting s
heme. Although the


ounter needs to be able to store values up to L (the number of voters), it may

be required to restri
t update operations to the set f0; 1g (representing a yes/no

vote). Modi�
ations to the de�nitions are straightforward.



Additive Counters. The transition algorithms des
ribed above take an old

state s and an integer i and output a new state s

0

whi
h represents the old value

in
remented by i. However, de�nitions 1 and 2 may be modi�ed su
h that the

transition algorithm takes an old state s and a se
ond state s

0

and then outputs a

new state s

00

whi
h represents the old value in
remented by the value stored in s

0

.

Su
h 
ounters are termed additive. Note that additive 
ryptographi
 n-
ounters

in
lude the 
ase of homomorphi
 en
ryption over Z

n

; yet, the former are more

general sin
e the transition algorithm need not be multipli
ation. De�nitions 3

and 4 
an be modi�ed for the 
ase of additive 
ounters in the natural way.

3 Constru
ting Cryptographi
 Counters

In Se
tions 3.1 and 3.2, we des
ribe the 
onstru
tion of a 
ryptographi
 n-
ounter

based on any 1-bit additive 
ryptographi
 
ounter. We also dis
uss the extension

to the 
ase of veri�able 
ryptographi
 
ounters. In Se
tion 3.4, using as a par-

ti
ular example the en
ryption s
heme based on quadrati
 residuosity [16℄ (see

Appendix A), whi
h is homomorphi
 over Z

2

, we give an eÆ
ient 
onstru
tion

of a veri�able 
ryptographi
 n-
ounter where update operations are restri
ted

to f0; 1g. This provides a natural foundation for a voting proto
ol; we dis
uss

this 
onne
tion further in Se
tion 4.

3.1 Linear Feedba
k Shift Registers

Before presenting our main result, we provide an introdu
tion to the theory of

linear feedba
k shift registers; a more 
omprehensive treatment 
an be found

in [20, 19℄. Let r

1

; r

2

; : : : 2 f0; 1g be a sequen
e of elements (
alled registers)

satisfying the k-th order linear re
urren
e relation:

r

j+k

= b

k

r

j+k�1

+ � � �+ b

1

r

j

; (1)

where b

i

2 f0; 1g (throughout this se
tion, addition is over the �eld Z

2

). The

sequen
e r

1

; r

2

; : : : is 
alled a linear re
urring sequen
e. On
e the terms r

1

; : : : ; r

k

have been �xed, the rest of the sequen
e is uniquely determined. De�ne the j-

th state of this sequen
e to be the ve
tor (r

j

; : : : ; r

j+k�1

). Equation (1) de�nes

transitions between these states: given state s = (r

1

; : : : ; r

k

), the next state

s

0

= (r

0

1

; : : : ; r

0

k

) 
an be 
omputed as follows:

r

0

i

=

�

r

i+1

1 � i < k

f(r

1

; : : : ; r

k

) i = k

;

where the fun
tion f is given by (1) as:

f(r

1

; : : : ; r

k

) = b

k

r

k

+ � � �+ b

1

r

1

:

This sequen
e of states de�nes a linear feedba
k shift register (LFSR). For the

present appli
ation, it is important to note that f 
an be 
omputed using xor

operations only.



Sin
e an LFSR has a �nite set of states, the sequen
e of states eventually

repeats. The number of states whi
h appear before the �rst state repeats (and

the sequen
e begins again) is 
alled the period. Clearly, an LFSR with period n


an be used to 
ount from 0 to n�1: 
hoose an arbitrary initial state giving rise

to a sequen
e of period n, label this initial state \0", and label every su

eeding

state by one more than the label of its prede
essor.

It is possible to asso
iate with every LFSR (whose underlying re
urren
e

relation is given by Equation (1)) the 
hara
teristi
 polynomial g(x) = x

k

�

b

k

x

k�1

� � � � � b

1

. The period of an LFSR is related to the order of its 
hara
-

teristi
 polynomial. In parti
ular, if the 
hara
teristi
 polynomial of an LFSR is

primitive

4

, then the LFSR has maximum possible period 2

k

� 1 (assuming the

initial state of the LFSR is not the zero ve
tor) [20, 19℄. Primitive polynomials


an be generated eÆ
iently using a probabilisti
 algorithm [22℄. It is thus pos-

sible to eÆ
iently 
onstru
t an LFSR whi
h 
ounts from 0 to n � 1 using the

minimum possible dlog

2

ne registers (ea
h representing a single bit).

Given a state s of an LFSR (and assuming knowledge of the initial state),

it is easy to de
ode the state and determine the number it represents by either


ounting down from s to the initial state, or 
ounting up from the initial state

until state s is rea
hed. This requires time O(n). This pro
edure is fast, however,

even for large

5

n, sin
e ea
h state transition 
onsists of only simple, bitwise

manipulations (shifts and xors). More eÆ
ient approa
hes are mentioned in

Se
tion 3.3.

3.2 General Constru
tion of a Cryptographi
 Counter

Theorem 1. An additive 
ryptographi
 2-
ounter se
ure against honest-but-


urious (resp. mali
ious) adversaries implies the existen
e of a 
ryptographi


n-
ounter se
ure against honest-but-
urious (resp. mali
ious) adversaries, for

all n of the form n = 2

x

� 1.

Sket
h of Proof An en
ryption s
heme homomorphi
 over (the additive

group) Z

2

is an example of an additive 
ryptographi
 2-
ounter se
ure against

honest-but-
urious adversaries. For ease of exposition, we des
ribe the 
onstru
-

tion of a 
ryptographi
 n-
ounter using an en
ryption s
heme (G; E ;D) whi
h is

homomorphi
 over Z

2

; it should be 
lear, however, that a substantially-similar


onstru
tion yields a 
ryptographi
 n-
ounter starting from any additive 
ryp-

tographi
 2-
ounter.

We show how to use the en
ryption s
heme as a building blo
k to 
onstru
t

a 
ryptographi
 n-
ounter. First, note that an LFSR (as des
ribed in Se
tion

3.1) is an n-
ounter. The idea behind the 
onstru
tion is as follows: sin
e only

xor operations are needed to e�e
t transitions, the en
ryption s
heme allows

4

A polynomial g 2Z

2

[x℄ of degree k is primitive if the smallest integer N for whi
h

gj(x

N

� 1) is N = 2

k

� 1.

5

For a typi
al voting s
heme, n will be on the order of the number of voters. So, even

for the U.S. ele
tion, we have n only (roughly) 10

8

.



a parti
ipant to 
hange the 
ounter without leaking any information about the

transition. Below is a 
omplete des
ription of the proto
ol (here, ` = dlog

2

ne):

Key Generation Algorithm G

0

(1

k

):

1. Run G(1

k

) to generate publi
 key pk

0

and se
ret key sk

0

.

2. Generate a primitive polynomial g 2Z

2

[x℄ of degree ` using [22℄.

3. Set r

1

= E

pk

0

(1) and r

2

= E

pk

0

(0); : : : ; r

`

= E

pk

0

(0).

4. Set s

0

= (r

1

; : : : ; r

`

), sk = (sk

0

; g), and pk = (pk

0

; g). Output pk; sk, and

s

0

.

Transition Algorithm [de�ned for i 2Z

n

℄ T ((pk

0

; g); (r

1

; : : : ; r

`

); i):

1. Polynomial g de�nes (nonzero) f(r

1

; : : : ; r

`

) = b

`

r

`

+ � � �+ b

1

r

1

(see Se
tion

3.1).

2. Repeat the following pro
edure i times

6

:

(a) Set r

0

1

= r

2

; : : : ; r

0

`�1

= r

`

.

(b) Set r

0

`

=

Q

`

i=1

r

b

i

i

.

(
) Set r

1

= r

0

1

; : : : ; r

`

= r

0

`

.

3. Set r

0

i

= r

i

� E

pk

0

(0), for 1 � i � `. Output s

0

= (r

0

1

; : : : ; r

0

`

).

De
ryption AlgorithmD(sk = (sk

0

; g); s = (r

1

; : : : ; r

`

)):

1. Let r

�

i

= D

sk

0

(r

i

), for 1 � i � `.

2. Let s

�

= (r

�

1

; : : : ; r

�

k

)

3. In
rement the LFSR de�ned by polynomial g, beginning with initial state

(1; 0; : : : ; 0), until rea
hing state s

�

. Let t be the number of transitions made.

Output t.

The proto
ol des
ribed above is a 
ryptographi
 n-
ounter se
ure against an

honest-but-
urious adversary. To see this, �x n. The size of the LFSR, `, is thus

a 
onstant (independent of the se
urity parameter). A simple hybrid argument

shows that an adversary 
annot distinguish between random representations of

any two states of the 
ounter. Therefore, an adversary 
annot gain any infor-

mation about the 
urrent value of the 
ounter, nor about transitions made. We

leave a formal proof to the full version of the paper.

Note that if we start with a 
ryptographi
 2-
ounter se
ure against mali
ious

adversaries, the above 
onstru
tion is also se
ure against mali
ious adversaries.

When using an arbitrary en
ryption s
heme homomorphi
 over Z

2

, the above


onstru
tion is se
ure against mali
ious adversaries if it 
an be eÆ
iently deter-

mined (given pk) whether a string represents a valid 
iphertext

7

; in this 
ase,

the transition algorithm must �rst 
he
k whether every register in s represents

a valid 
iphertext before 
omputing s

0

(if this is not true, it aborts). ut

6

This algorithm 
an be made signi�
antly more eÆ
ient to run in time polynomial

in log n. This is dis
ussed brie
y in Se
tion 3.3.

7

For example, in the 
ase of en
ryption using quadrati
 residuosity, it is possible to

tell whether a string C is a valid 
iphertext by 
he
king that the Ja
obi symbol of

C is 1.



In order to make the above 
onstru
tion veri�able, only a few 
hanges are

needed. First, we in
lude a random string � in the publi
 key. Additionally, we


hange the transition algorithm so that after s

0

has been output, we append a

non-intera
tive zero-knowledge proof (NIZK) [5℄ using random string � that the

transition from s to s

0

was valid. The veri�
ation algorithm V runs the proof-

veri�
ation algorithm for the NIZK proof. If the proof veri�
ation su

eeds, the

veri�
ation algorithm outputs 1; otherwise, it outputs 0. A veri�able, restri
ted

n-
ounter 
an be 
onstru
ted in a similar way.

3.3 Observations on the Cryptographi
 Counter Constru
tion

Linear feedba
k shift registers have an algebrai
 interpretation: the state of an

`-bit LFSR represents an element of GF

�

(2

`

). In
rementing the 
ounter 
or-

responds to multipli
ation of the state by a generator, g, of the multipli
ative

group in GF

�

(2

`

). This allows for two important gains in eÆ
ien
y, whi
h are

highlighted below.

First, the 
ounter may be eÆ
iently updated by values larger than 1. In

parti
ular, the 
ounter may be in
remented by value i in only O(`

2

log i) steps,

as opposed to the O(` � i) steps used in the transition fun
tion of Se
tion 3.2.

Next, note that the state of the LFSR 
an be viewed as an element of the

form g

j

in GF

�

(2

`

). Therefore, one 
an use algorithms for solving the dis
rete

logarithm problem to determine the value represented by the state of the LFSR,.

In parti
ular, it is relatively straightforward to determine the value of an `-bit

LFSR in time

p

2

`

, and an algorithm due to Coppersmith [7℄ allows de
oding in

time O(2

`

1=3

(log

2=3

`)

).

3.4 An EÆ
ient Cryptographi
 Counter

The well-known en
ryption s
heme based on quadrati
 residuosity [16℄ (see Ap-

pendix A) is homomorphi
 over Z

2

. Appli
ation of Theorem 1 (see also foot-

note 7) shows that the 
onstru
tion outlined there results in a 
ryptographi



ounter se
ure against mali
ious adversaries when instantiated with this en
ryp-

tion s
heme. If we are interested in veri�ability, however, the generi
 
onstru
tion

of Se
tion 3.2 will be impra
ti
al unless there exists an eÆ
ient NIZK proof that

the transition algorithm was exe
uted 
orre
tly. In the 
ase of quadrati
 resid-

uosity, we show that eÆ
ient NIZK proofs are possible. Sin
e we are interested

in eventual appli
ations to ele
troni
 voting, we fo
us on the 
ase of a restri
ted


ounter where transitions are limited to either no 
hange in the 
ounter (a 0

vote) or in
rementing the 
ounter by 1 (a 1 vote).

Consider the 
ryptographi
 
ounter proto
ol of Se
tion 3.2, instantiated with

en
ryption based on quadrati
 residues. Let N be a Blum integer whi
h is part

of the asso
iated publi
 key. The string s = (r

1

; : : : ; r

`

) (with r

i

2 Z

+1

N

) is a


ryptographi
 representation of some state of the LFSR, but this underlying

state 
annot be determined unless one knows the se
ret key. However, following

a transition to s

0

= (r

0

1

; : : : ; r

0

`

), there are two possibilities: either

QR

N

(r

0

i

) = QR

N

(r

i

); for 1 � i � `; (2)



Prover Veri�er

r

1

; : : : ; r

`

2

R

Z

�

N

s

1

; : : : ; s

`

2

R

Z

�

N

b 2

R

f0; 1g

t

1

= r

2

1

X

1

; : : : ; t

`

= r

2

`

X

`

u

1

= s

2

1

Y

b

1

; : : : ; u

`

= s

2

`

Y

b

`

-

t

1

; : : : ; t

`

; u

1

; : : : ; u

`


 2

R

f0; 1g

�




b

0

= b� 
; b

00

= b

0

� 1

z

1

= r

1

x

b

00

1

; : : : ; z

`

= r

`

x

b

00

`

-

z

1

; : : : ; z

`

; s

1

; : : : ; s

`

; b

0

; b

b

0

� b

?

= 


z

2

1

X

b

0

1

?

= t

1

; : : : ; z

2

`

X

b

0

`

?

= t

`

s

2

1

Y

b

1

?

= u

1

; : : : ; s

2

`

Y

b

`

?

= u

`

Fig. 1. Proof of validity for a 
ounter transition.

whi
h represents a 0 vote, or

QR

N

(r

0

i

) = QR

N

(r

i+1

); for 1 � i < ` and QR

N

(r

0

`

) = QR

N

(

`

Y

i=1

r

b

i

i

); (3)

(with b

i

as de�ned in Se
tion 3.2), whi
h represents a 1 vote. We seek an NIZK

proof that either 
ondition (2) or 
ondition (3) holds. Note that these 
onditions

are equivalent to the following: either

QR

N

(r

0

i

� r

i

) = 0; for 1 � i � `; (4)

or else

QR

N

(r

0

i

� r

i+1

) = 0; for 1 � i < ` and QR

N

(r

0

`

�

`

Y

i=1

r

b

i

i

) = 0: (5)

Therefore, an NIZK proof that one of (4) or (5) holds is suÆ
ient.

In Figure 1 we des
ribe a proto
ol whi
h takes as input two sequen
es

X

1

; : : : ; X

`

and Y

1

; : : : ; Y

`

, and proves the following statement:

((QR

N

(X

1

) = 0)^� � �̂ (QR

N

(X

`

) = 0))_((QR

N

(Y

1

) = 0)^� � �̂ (QR

N

(Y

`

) = 0)):

(6)

By the arguments of the previous paragraph, this is suÆ
ient for our appli
ation.

The prover knows the square roots of every element of at least one of these

sequen
es

8

(for someone who honestly in
rements the 
ounter by either 0 or 1,

8

Without loss of generality, we assume the prover knows the square roots for the

�rst input sequen
e; thus, in Figure 1, we assume the prover knows fx

i

g su
h that

x

2

i

= X

i

, for 1 � i � `.



this will be the 
ase); these are the witnesses that these elements are quadrati


residues.

By repeating this proto
ol k

2

times, the probability of 
heating is redu
ed to

2

�k

2

. This proto
ol 
an be made non-intera
tive using the Fiat-Shamir heuristi


[13℄, by whi
h the 
hallenge of the veri�er is repla
ed by applying a hash fun
tion

(viewed as a random ora
le [1℄) to the statement to be proved and the �rst

message of the prover. Let H be a suitable hash fun
tion. The prover need only

send z

1

; s

1

; : : : ; z

`

; s

`

; b

0

; b as his proof. The veri�er 
an 
ompute t

i

= z

2

i

X

b

0

i

and

u

i

= s

2

i

Y

b

i

and then verify whether b

0

� b = H(X

1

; Y

1

; t

1

; u

1

; : : : ; X

`

; Y

`

; t

`

; u

`

).

Theorem 2. Take the 
ryptographi
 
ounter as des
ribed in Theorem 1, instan-

tiated with en
ryption based on quadrati
 residuosity. An update of the 
ounter

now in
ludes a non-intera
tive proof (as outlined in Figure 1 and using the Fiat-

Shamir heuristi
) for statement (6). This then 
onstitutes a veri�able, restri
ted


ryptographi
 n-
ounter (for all n of the form n = 2

x

�1) whi
h is se
ure against

mali
ious adversaries.

Sket
h of Proof The proto
ol given in Figure 1 
onstitutes an honest-veri�er

perfe
t zero knowledge proof with soundness probability 1=2. The proof of this

fa
t follows from te
hniques outlined in [11℄; we refer the reader there for dis
us-

sion and a 
omplete proof. Repeating the proof k

2

times (non-intera
tively, using

the Fiat-Shamir heuristi
) redu
es the probability of 
heating to 2

�k

2

, and is a

non-intera
tive zero-knowledge proof (in the random ora
le model). The 
ounter

is thus restri
ted in that updates are limited to adding an integer from f0; 1g,

and veri�able in that updates 
an be publi
ly veri�ed as being in this range.

The se
urity of the 
onstru
tion against a mali
ious adversary follows from

Theorem 1 and the zero-knowledge properties of the above proto
ol. ut

3.5 Distributed De
ryption of the Counter

We mention that robustness with respe
t to the trusted authorities 
an be

a
hieved via distributed generation of the se
ret key along with threshold de
ryp-

tion of the �nal 
ounter (whi
h 
an always be a
hieved via general multi-party

te
hniques [15℄). For the parti
ular 
ase when en
ryption is done using quadrati


residuosity, we are able to a
hieve eÆ
ient distributed key generation and thresh-

old de
ryption [18℄. As this is not the fo
us of this work, we defer a 
omplete

dis
ussion until the full version of the paper.

4 Voting with Cryptographi
 Counters

We brie
y dis
uss the appli
ation of 
ryptographi
 
ounters to the problem of

ele
troni
 voting. The dis
ussion will be kept as general as possible. For eÆ
ient

implementation, we have outlined above how it is possible to build an eÆ
ient

s
heme using the en
ryption s
heme based on quadrati
 residuosity.

We follow the model introdu
ed by Benaloh, et al. [6, 3, 4℄. The parties parti
-

ipating in the ele
tion 
onsist of a set of voters V

1

; : : : ; V

L

and a set of authorities



A

1

; : : : ; A

M

, whi
h need not be disjoint. We assume that everyone has a

ess to

a bulletin board to whi
h all voters will post their messages. Messages are au-

thenti
ated, and the identity of a sender 
annot be forged, nor 
an messages to

the bulletin board be tampered with. Messages are listed in order of arrival (or,

equivalently, every message in
ludes the time it was sent), and no one 
an erase

anything from the bulletin board on
e posted. Note that we do not assume any

private 
hannels between voters and the authorities. We now give a high-level

des
ription of a voting proto
ol based on a restri
ted 
ryptographi
 
ounter; this

proves the following theorem:

Theorem 3. A voting s
heme satisfying universal veri�ability, priva
y, and ro-

bustness 
an be eÆ
iently 
onstru
ted from any (robust) veri�able, restri
ted


ryptographi
 
ounter se
ure against mali
ious adversaries (where votes are re-

stri
ted to the set f0; 1g).

Sket
h of Proof We des
ribe the voting proto
ol assuming the existen
e of a

veri�able, restri
ted 
ryptographi
 n-
ounter (where votes are restri
ted to the

set f0; 1g) se
ure against mali
ious adversaries. Robustness (with respe
t to the

authorities) follows if the 
ounter itself is robust (as des
ribed in Se
tion 3.5).

System Setup. The authorities run the key generation algorithm for the 
ryp-

tographi
 n-
ounter. Here, n is 
hosen to be equal to the total number of voters

(or an upper bound on the number of voters if the exa
t number is unknown). If

robustness is desired, and/or if some voters are also authorities, the key genera-

tion may be done in a robust manner as outlined in Se
tion 3.5. The publi
 key

pk and the initial state s

0

are announ
ed to all voters. The key generation step

may be the most expensive part of the entire proto
ol, but it is only a one-time

operation whi
h 
an be done months before the ele
tion takes pla
e.

Voting. The 
ounter always holds the 
urrent vote total. The 
urrent 
ounter

value is always de�ned as the most re
ently posted (valid) 
ounter value. Denote

the 
ounter after the i

th

vote by s

i

. The (i+ 1)

th

vote is 
ast as follows: a voter

looks at the 
urrent 
ounter and 
omputes new state s

i+1

using the transition

fun
tion, the previous state s

i

, the desired vote v 2 f0; 1g, and the publi
 key

pk. The voter publishes this updated state s

i+1

whi
h then be
omes the 
urrent

state (sin
e it is the most re
ently posted 
ounter). This pro
eeds for L rounds

until every voter has voted on
e (see Se
tion 5 for ways to redu
e the number of

rounds).

Universal veri�ability (and hen
e vote 
orre
tness) follows from veri�ability

of the 
ounter, and voter priva
y follows from the de�nition of se
urity against

a mali
ious adversary. Robustness with respe
t to the authorities follows from

the (robust) distributed key generation and de
ryption.

Tallying. When the ele
tion is 
omplete, the authorities determine the �nal

tally by de
rypting the last (valid) 
ounter. If there is more than one trusted

authority, threshold de
ryption (see Se
tion 3.5) will be ne
essary. It may also

be desirable to have the authorities prove 
orre
tness of the de
ryption; note

that it is not a

eptable to just publish the se
ret key, sin
e this would allow



determination of every voter's vote retroa
tively. In the parti
ular 
ase where

en
ryption is done via quadrati
 residues, the authorities 
an easily prove that

de
ryption was done 
orre
tly by publishing an x for ea
h en
rypted value y

su
h that y = �x

2

. ut

5 Con
lusion

For small-s
ale ele
tions, the voting s
heme outlined here (when based on the

en
ryption s
heme using quadrati
 residuosity) is eÆ
ient enough to be pra
ti
al

(
f. Table 1). The required 
omputation and vote size are quite reasonable. One

drawba
k to this s
heme is the number of rounds required for voting to take pla
e.

When a single 
ryptographi
 
ounter is used, the number of rounds is equal to

the number of voters, L. However, by using k 
ryptographi
 
ounters, assigning

ea
h voter to one of k groups, and allowing voting to take pla
e in parallel, the

number of rounds 
an be redu
ed to L=k. Even in a national ele
tion, su
h an

approa
h may be a

eptable; for example, by assigning a set of 
ounters to ea
h

voting distri
t.

From a theoreti
al point of view, the approa
h outlined in this paper is

espe
ially interesting sin
e it was previously un
lear whether voting 
ould be

done eÆ
iently without using fully-homomorphi
 en
ryption.
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A The Quadrati
 Residuosity Assumption

These de�nitions are standard [16, 11℄. We say y 2Z

�

N

is a quadrati
 residue modulo

N i� there exists an x 2Z

�

N

su
h that y = x

2

mod N ; otherwise, y is a quadrati
 non-

residue modulo N . De�ne the predi
ate QR

N

(y) to be 0 i� y is a quadrati
 residue

modulo N , and 1 otherwise. For p prime, the problem of de
iding quadrati
 residuosity

is equivalent to 
omputing the Legendre symbol. In fa
t, the Legendre symbol of y

modulo p is de�ned by L

p

(y) = +1 i� y is a quadrati
 residue, and �1 otherwise.

Now, let p; q � 3 mod 4 be primes and let N = pq (su
h N are known as Blum

integers). No eÆ
ient algorithm is known for de
iding quadrati
 residuosity modulo

a Blum integer whose fa
torization is not known. Some information is given by the

Ja
obi symbol, whi
h extends the Legendre symbol as J

N

(y) = L

p

(y)L

q

(y). Despite

the way the Ja
obi symbol is de�ned, it is well-known that it 
an be 
omputed in

polynomial time without knowledge of the fa
tors of N . Appli
ation of the Chinese

Remainder Theorem shows that if J

N

(y) = �1, then y 
annot be a quadrati
 residue

modulo N . On the other hand, if J

N

(y) = +1, no polynomial-time algorithm is known

for 
omputing QR

N

(y) if the fa
torization of N is unknown.

De�neZ

+1

N

as the set of elements ofZ

�

N

with Ja
obi symbol 1. It is easy to generate

a random y 2 Z

+1

N

whi
h is a quadrati
 residue: 
hoose random r 2 Z

�

N

and set

y = r

2

mod N . It is equally easy to generate a random quadrati
 non-residue: 
hoose

random r 2 Z

�

N

and set y = �r

2

mod N . This suggests the following semanti
ally

se
ure en
ryption s
heme [16℄: the publi
 key is a Blum integer N , and the se
ret key

is the prime fa
tors of N . To en
rypt a 0, send a random quadrati
 residue; to en
rypt

a 1, send a random quadrati
 non-residue. This 
an be extended to n-bit messages in

the obvious way, by 
on
atenating n single-bit en
ryptions.

When y

1

; y

2

2 Z

+1

N

, it is easily veri�ed that QR

N

(y

1

y

2

) = QR

N

(y

1

) �QR

N

(y

2

).

This shows that the above en
ryption s
heme is homomorphi
 over addition in its

message spa
e Z

2

.


