University of Maryland CMSC414 — Computer and Network Security Professor Jonathan Katz

Homework 4 Please turn in a hard-copy in class on Dec. 7 This homework is to be done individually

These questions all concern authentication/key-exchange protocols. They are adapted from "Network Security: Private Communication in a Public World," and references to the appropriate exercise numbers are given.

- 1. (Question 9.10.2) Consider the following authentication protocol based on a cryptographic hash H. The server stores z = H(w), where w is the user's password. To log on, the user enters their password w. The server sends a random challenge r, and the client responds with h = H(H(w), r). The server accepts the user iff $h \stackrel{?}{=} H(z, r)$. Does this give an example of an authentication scheme that is not based on public-key cryptography, yet is secure against both eavesdropping and server compromise?
- 2. (Question 11.9.5) Consider the following 2-round authentication protocol where the server does not have to maintain any state. The client and server share a symmetric key k. To authenticate, the server sends a random challenge r and the client responds with $\langle , r, F_k(r) \rangle$, where F is a block cipher. Upon receiving the message $\langle \hat{r}, \hat{y} \rangle$, the server accepts iff $y \stackrel{?}{=} F_k(r)$. Is this protocol secure?
- 3. (Question 11.9.6) Consider the following variant of the protocol from the previous question. The server sends $\langle r, F_{k'}(r) \rangle$, where r is again chosen at random and k' represents a secret key known only to the server. The client responds with $\langle r, F_{k'}(r), F_k(r) \rangle$. Upon receiving the message $\langle r, x, y \rangle$, the server accepts iff (1) $x \stackrel{?}{=} F_{k'}(r)$ and (2) $y \stackrel{?}{=} F_k(r)$. Is this protocol secure?
- 4. (Question 11.9.9) The expanded Needham-Schroeder protocol (discussed in class and also Protocol 11-19 in the book) can be shortened to 6 rounds, without compromising security, by removing the final message. Why is this true? Specifically, why does the resulting 6-round protocol convince Bob he is talking to Alice?
- 5. (Question 12.5.15) Consider the following protocol, where the client begins holding password w and the server holds $g^w \mod p$. (Here, g and p are Diffie-Hellman parameters.)
 - (a) The client sends $g^a \mod p$ for random a.
 - (b) The server sends $g^b \mod p$ for random b, along with a random challenge r_1 .
 - (c) The client compute $K = H(g^{ab} \mod p, g^{wb} \mod p)$, where H is a cryptographic hash function. The client then sends $\langle F_K(r_1), r_2 \rangle$ to the server, where F is a block cipher.

- (d) The server also computes K, and accepts the incoming message $\langle y, r_2 \rangle$ from the client iff $y \stackrel{?}{=} F_K(r_1)$. If so, the server responds with $F_K(r_2)$.
- (e) The client accepts the server's response x iff $x \stackrel{?}{=} F_K(r_2)$.

How do the client and server each compute K? Show also how an adversary impersonating the server can perform an off-line dictionary attack on the password.