
Meteor: Cryptographically Secure Steganography
for Realistic Distributions

Gabriel Kaptchuk
Boston University

Boston, United States
kaptchuk@bu.edu

Tushar M. Jois, Matthew Green, Aviel D. Rubin
Johns Hopkins University
Baltimore, United States

{jois,mgreen,rubin}@cs.jhu.edu

ABSTRACT
Despite a long history of research and wide-spread applications to
censorship resistant systems, practical steganographic systems ca-
pable of embedding messages into realistic communication distribu-
tions, like text, do not exist. We identify two primary impediments
to deploying universal steganography: (1) prior work leaves the
di�cult problem of �nding samplers for non-trivial distributions
unaddressed, and (2) prior constructions have impractical minimum
entropy requirements. We investigate using generative models as
steganographic samplers, as they represent the best known tech-
nique for approximating human communication. Additionally, we
study methods to overcome the entropy requirement, including
evaluating existing techniques and designing a new steganographic
protocol, called Meteor. The resulting protocols are provably indis-
tinguishable from honest model output and represent an important
step towards practical steganographic communication for mundane
communication channels. We implement Meteor and evaluate it
on multiple computation environments with multiple generative
models.

CCS CONCEPTS
• Security and privacy ! Cryptography; Network security;
Pseudonymity, anonymity and untraceability.

KEYWORDS
Steganography; Applied Cryptography; Generative Models; Cen-
sorship Resistance

ACM Reference Format:
Gabriel Kaptchuk and Tushar M. Jois, Matthew Green, Aviel D. Rubin.
2021. Meteor: Cryptographically Secure Steganography for Realistic Dis-
tributions. In Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’21), November 15–19, 2021, Vir-
tual Event, Republic of Korea. ACM, New York, NY, USA, 21 pages. https:
//doi.org/10.1145/3460120.3484550

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484550

1 INTRODUCTION
The past several years have seen a proliferation of encrypted com-
munication systems designed to withstand even sophisticated, nation-
state attackers [1, 2]. While these systems maintain the con�den-
tiality of plaintext messages, the data transmitted by these tools is
easily identi�able as encrypted communication. This makes these
protocols easy targets for repressive regimes that are interested
in limiting free communication [3, 4]: for example, using network
censorship techniques such as those practiced by countries like
China [5–7]. Concrete attempts to suppress the encrypted commu-
nication technologies used to evade censors are now underway. For
example, China’s Great Firewall (GFW) not only prevents users
from accessing content deemed subversive, but it also actively de-
tects and blocks encryption-based censorship circumvention tech-
nologies such as Tor [8–10].

In regimes where cleartext communication is expected, the mere
use of encryption may be viewed as an indication of malicious
or subversive intent. To work around blocking and avoid suspi-
cion, users must make their communications look mundane. For
instance, Tor users in China have begun to leverage steganographic
techniques such as ScrambleSuit/obfs4 [11], SkypeMorph [12], Ste-
goTorus [13], TapDance [14, 15], and Format-Transforming Encryp-
tion [16]. These techniques embed messages into tra�c that censors
consider acceptable.

While the current generation of steganographic tools is su�cient
to evade current censorship techniques, these tools are unlikely to
remain a sustainable solution in the future. While some tools pro-
vide strong cryptographic guarantees [12, 17, 18], this is achievable
only because they encode messages into (pseudo-)random cover-
text channels, i.e., replacing a random or encrypted stream with a
chosen pseudorandom ciphertext. Unfortunately, there is no guar-
antee that such channels will continue to be available: a censor can
systematically undermine such tools by preventing the delivery of
encrypted tra�c for which it does not have a suitable trapdoor, (i.e.,
an access mechanism), or by selectively degrading the quality of
encrypted channels. An audacious, repressive regime could even
consider all encryption to be subversive, and drop all packets not
explicitly recognizable as meaningful plaintext. Rigorous studies of
the capabilities of the current GFW focus on other techniques [19–
22], but there is anecdotal evidence that encryption suppression
has begun to occur [23], including the blocking of some TLS 1.3
connections [24].

Steganography for Realistic Communication Channels. To
combat extreme censorship, there is a need for steganographic pro-
tocols that can produce stegotext (the steganographic equivalent
of ciphertext) that closely mimics real, innocuous communication.

https://doi.org/10.1145/3460120.3484550
https://doi.org/10.1145/3460120.3484550
https://doi.org/10.1145/3460120.3484550

With such techniques, it would be impossible for a censor to se-
lectively repress communications, as subversive messages could
hide in benign communication. For instance, if dissidents could en-
code secret messages into mundane appearing emails, web-forum
posts, or other forms of “normal” human communication, censor-
ship would be impractical. The ideal tool for this task is universal
steganography: schemes which are able to securely hide sensitive
information in arbitrary covertext channels (the steganographic
term for communication channels). Even if the censor suspects
something, the secret message cannot be found — nor is there any
statistical evidence of its existence.

A key challenge in this setting is to identify a generator of some
useful distribution where sampling will produce symbols that are
identical (or at least close) to ordinary content present in a com-
munications channel. Given such a generator, numerous universal
steganographic constructions have been proposed that can sam-
ple from this distribution to produce a stegotext [25–31]. Unfortu-
nately, identifying useful generators is challenging, particularly for
complex distributions such as natural language text. To our knowl-
edge, the only practical attempts to achieve practical steganography
such natural communication channels have come from the natural
language processing (NLP) community [32–44]. While the result-
ing text is quite convincing, these works largely rely on insecure
steganographic constructions that fail to achieve formal de�ni-
tions [45–50]. In this work, we focus our attention on constructing
provably secure steganography for the kinds of distributions that
would be di�cult for a censor block without su�ering signi�cant
social repercussions. To do so, we identify and overcome the barri-
ers to using steganographic techniques as practical tools to combat
network censorship.
Overcoming Shortcomings of Existing Steganographic Tech-
niques. Steganographic schemes that are able to encode into any
communication channel have been the subject of signi�cant the-
oretical work, e.g., [25–31]. Generally, constructions rely on the
existence of an e�cient sampler functionality that, on demand,
outputs a token (sometimes referred to as a document) that could
appear in the covertext channel. These tokens are then run through
a hash function that maps the token to a small, �xed number of
bits. Using rejection sampling, an encoder can �nd a token that
maps to some speci�c, desired bits, usually the �rst few bits of
a pseudo-random ciphertext. By repeatedly using this technique,
a sender can encode an entire ciphertext into a series of tokens,
and a receiver can recover the message by hashing the tokens and
decrypting the resulting bits. Security of these approaches relies on
the (pseudo-)randomness of the ciphertext and carefully controlling
the bias introduced by rejection sampling.

There are two signi�cant barriers to using universal stegano-
graphic systems for censorship-resistant communication: (1) the
lack of appropriate samplers for real, desirable covertext channels,
like English text, and (2) the minimum entropy bounds required to
use existing techniques.

(1) Generative Models as Steganographic Samplers. Existing work
leaves samplers as an implementation detail. However, �nding a
suitable sampler is critical to a practical construction. Sampling
is straightforward for simple covertext channels for which the
instantaneous probability distribution over the next token in the

channel can be measured and e�ciently computed: draw random
coins and use them to randomly select an output from the explicit
probability distribution. Natural communication channels — the
most useful targets for practical steganography — are generally
too complex for such naïve sampling techniques. For example, it
is infeasible to perfectly measure the distribution of the English
language, and the usage of English continues to evolve and change.

Without access to perfect samplers, we explore steganographic
samplers that approximate the target channel. While this relaxation
introduces the risk that an adversary can detect a steganographic
message by distinguishing between the real channel and the ap-
proximation, this is the best we can do when perfect samplers cannot
be constructed. In this work, we propose to use generative models
as steganographic samplers, as these models are the best technique
for approximating complex distributions like text-based communi-
cation. While these models are still far from perfect, the quality of
generated content is impressive [51, 52] and continues to improve,
raising concerns about the disastrous societal impact of misuse [53].

Generative models operate by taking some context and model
parameters and outputting an explicit probability distribution over
the next token (for example, a character or a word) to follow that
context. During typical use, the next token to add to the output is
randomly sampled from this explicit distribution. This process is
then repeated, updating the context with the previously selected
tokens, until the output is of the desired length. Model creation,
or training, processes vast amounts of data to set model param-
eters and structure such that the resulting output distributions
approximate the true distributions in the training data.

The use of generative models as steganographic samplers facili-
tates the creation of stegotext that are provably indistinguishable
from honest model output, and thus good approximations of real
communication (although not indistinguishable from real communi-
cation). We show that the nature of generative models, i.e. a shared
(public) model and explicit probability distribution, can be lever-
aged to signi�cantly increase concrete e�ciency of steganographic
schemes. Our key insight is that a sender and receiver can keep
their models synchronized, and thus recover the same explicit prob-
ability distribution from which each token is selected, a departure
from traditional steganographic models. This allows the receiver
to make inferences about the random coins used by the sender
when sampling each token. If the message is embedded into this
randomness (in an appropriately protected manner), the receiver
can use these inferences to extract the original message.

(2) Steganography for Channels with High Entropy Variability. The
second barrier is the channel entropy requirements of most existing
schemes. Speci�cally, most universal steganographic schemes are
only capable of encoding messages into covertext channels if that
channel maintains some minimum entropy, no matter the context.
Real communication channels often encounter moments of low (or
even zero) entropy, where the remaining contents of the message
are fairly proscribed based on the prior context. For instance, if
a sentence generated by a model trained on encyclopedia entries
begins with “The largest carnivore of the Cretaceous period was
the Tyranosaurus” with overwhelming probability the next token
will be “Rex”, and any other token would be very unlikely. In many
existing steganographic proposals, if the hash of this next token

(i.e. Hash(“Rex”)) does not match the next bits of the ciphertext, no
amount of rejection sampling will help the encoder �nd an appro-
priate token, forcing them to restart or abort. Thus, to ensure that
the probability of this failure condition is small, most classical con-
structions impose impractical entropy requirements. We investigate
overcoming this problem in two ways. First, we evaluate the practi-
cality of known techniques for public-key steganography, in which
an arbitrary communication channel is compiled into one with
su�cient entropy. Second, we leverage the structure of generative
models to create a new, symmetric key steganographic encoding
scheme called Meteor. Our key observation is that the best way
to adapt to variable entropy is to �uidly change the encoding rate
to be proportional to the instantaneous entropy. Together, these
could be used to build hybrid steganography, where the public-key
scheme is used to transmit a key for a symmetric key scheme.
Contributions. In this work we explore the use of modern gen-
erative models as samplers for provably secure steganographic
schemes. This provides the groundwork for steganography that
convincingly imitates natural, human communication once the
di�erences between generative models and true communication
become imperceptible. In doing so, we have the following contribu-
tions:
• Evaluation of Classical Public-Key Steganography in Prac-
tice. We evaluate the use of a classical public-key steganographic
scheme from [54]. We investigate adapting this scheme to work
with generative models, and show that known techniques intro-
duce prohibitively high overhead.

• Meteor. We present Meteor, a new symmetric-key, stateful, prov-
ably secure, steganographic system that naturally adapts to highly
variable entropy. We provide formalization for the underlying
techniques so that they can be easily applied to new generative
models as they are developed.

• Implementation and Benchmarking. Additionally, we imple-
ment Meteor and evaluate its performance in multiple computing
environments, including on GPU, CPU, and mobile. We focus
primarily on English text as our target distribution, but also in-
vestigate protocol generation. To the best of our knowledge, our
work is the �rst to evaluate the feasibility of a provably secure,
universal steganographic using text-like covertext channels by
giving concrete timing measurements.

• Comparison with Informal Steganographic Work. In addi-
tion to the constructive contributions above, we survey the inse-
cure steganographic techniques present in recent work from the
NLP community [32–44]. We discuss modeling di�erences and
give intuition for why these protocols are not provably secure.

Limitations. We want to be clear about the limitations of our work.
• Our work does not address how well a machine learning model

can approximate an existing, “real” communication channel. An-
swering this question will be crucial for deployment and is the
focus of signi�cant, machine learning research e�ort [51, 52].
Regardless of the current state of generative models and how
well they imitate real communication, our work is valuable for
the following reasons:

(1) The ever-changing and poorly de�ned nature of real communi-
cation channels makes sampling an inherently hard problem;
channels of interest are impossible to perfectly measure and

characterize. This means the imperceptibility of steganography
for these channels will always be bounded by the accuracy
of the available approximation techniques. The best approxi-
mation tool available in the existing literature is generative
modeling [55], and thus we focus on integrating them into
steganographic systems.

(2) We prepare for a future in which encrypted and pseudorandom
communications are suppressed, breaking existing tools. As
such, the current inadequacies of generative models should not
be seen as a limitation of our work; the quality of generative
models has steadily improved [52] and is likely to continue
improving. Once the techniques we develop are necessary in
practice, there is hope that generative models are su�ciently
mature to produce convincingly real output.

(3) Finally, there already exist applications in which sending model
output is normal. For instance, arti�cial intelligence powered
by machine learning models regularly contribute to news ar-
ticles [56, 57], create art [58, 59], and create other digital con-
tent [60, 61]. Theses channels can be used to facilitate crypto-
graphically secure steganographic communication using our
techniques today.

• In Meteor, we assume that the sender and receiver (along with the
censor) access the same generative model. While this requirement
might seem like a limitation, we reiterate that the security of
the scheme does not require that the model remain private. As
such, this model is similar to the common random string model
common in cryptography. Additionally, it is common practice to
share high quality models publicly [51, 52, 62], and these models
would outperform anything an individual could train. As such,
we believe that this assumption is reasonable and show it yields
signi�cant performance gains.

Deployment Scenario. Our work focuses on the following sce-
nario: Imagine a sender (e.g. news website, compatriot) attempting
to communicate with a receiver (e.g. political dissident) in the pres-
ence of a censor (e.g. state actor) with control over the communica-
tions network. We assume that the sender and receiver agree on any
necessary key information out of band and select an appropriate
(public) generative model. Although we focus on English text in this
work, the generative model could be for any natural communica-
tion channel. The sender and receiver then initiate communication
over an existing communication channel, using a steganographic
encoder parameterized by the generative model to select the tokens
they send over the channel. The censor attempts to determine if
the output of the generative model being exchanged between the
sender and receiver is subversive or mundane. We note that practi-
cal deployments of these techniques would likely incorporate best
practices to achieve forward secrecy, post compromise security, and
asynchronicity, possibly by using parts of the Signal protocol [1].
Organization. In Section 2, we give background and assess re-
lated work on classical steganographic techniques from the cryp-
tographic community, how steganography is currently used in
practice, and generative models. In Section 3, we give formal def-
initions for steganography. In Section 4, we explore using exist-
ing techniques and steganographic schemes to build public-key
steganography for English text distributions. In Section 5, we give
a construction of a new, symmetric key steganographic system,

Algorithm 1: Public-Key Encoding Scheme from [54]
Input: Plaintext Message<, Distribution D, Sampling

Bound : , public-key pk
Output: Stegotext Message 2
G PseudorandomPKEncrypt(pk,<)

Let G0 | |G1 | | . . . | |G |G | G
2 Y
for 8 < |G | do

28 Sample(D)

9 0
while 5 (28) < G8 and 9 < : do

28 Sample(D)

9 9 + 1
2 2 k28

Output 2

Figure 1: The public-key steganography scheme from [54].
PseudorandomPKEncrypt is the encryption routine for a pseu-
dorandom, public-key encryption scheme. Sample randomly
selects an token from the covertext space according to the
distribution D .

Meteor, and analyze its e�ciency and security. In Section 6, we
give implementation details for Meteor and evaluate the e�ciency
of using Meteor on di�erent systems. Finally, in Section 7 we dis-
cuss existing work from the NLP community and show why it is
insecure.

2 BACKGROUND AND RELATEDWORK

Classical Steganography. Since Simmons’ �rst formalization of
steganographic communication [25], signi�cant e�ort has been de-
voted to theoretical steganography. Early work focused on achiev-
ing information-theoretic security [26, 27, 63, 64] before moving on
to cryptographic [28–30] and statistical [65–67] notions of steganog-
raphy. The are many symmetric-key constructions [27, 28, 68],
public-key constructions [29, 30, 69, 70], and even identity based
constructions [71]. Relatively little on formal steganography has
been in the last 15 years, although there are recent works consider-
ing the boundaries of steganography [72], the related problem of
backdoor resistance [73] and keyless steganography [74].

In general, the steganographic schemes presented in the litera-
ture rely on rejection sampling to �nd randomly selected elements
of the covertext distribution that hash to desired bits. Given space
constrains, we cannot describe and compare to all prior work. For
a representative example, consider the public-key steganographic
scheme from [29, 54] presented in Algorithm 1. First, the encoder
uses a pseudorandom, public-key encryption scheme to encrypt
the message. Then, one bit G8 at a time, the encoder uses rejection
sampling to �nd a token 28 in the covertext distribution D such
that 5 (28) = G8 , where 5 is a perfectly unbiased function over D.
We omit the formal description of the simple decoding algorithm,
in which the receiver simply computes 5 (28) for all 8, concatenates
the bits, and decrypts the result.

Security for such schemes is simple to see: each bit of the en-
crypted message is random, by the pseudorandomness of the ci-
pher, and each token in the stegotext is randomly sampled from
the true distribution, with no bias introduced by the hash function
(by de�nition). As such, the distribution of the stegotext matches
the covertext exactly. However, if no unbiased hash function exists,
as none do for in�nitely many distributions [54], a universal hash
function can be used instead, and the bias it introduces must be
carefully controlled.

These rejection sampling algorithms fail when the distribution
has very low entropy. In such cases, it is unlikely an unbiased hash
function will exist, so a universal hash function must be used. One
of two possible problems is likely to occur. (1) During sampling,
it is possible that the sampling bound : may be exceeded without
�nding an acceptable token, after which the encoder simply ap-
pends a randomly sampled token. Importantly, the receiver can not
detect that this error has occurred, or indeed how many such errors
are contained in the message, and will just get a decryption error
during decoding. (2) If : is set very high, it may be possible to �nd
a token that hashes to the correct value, at the cost of introducing
noticeable bias in the output distribution. As such, it is critical that
the distribution maintain some minimum amount of entropy. To
our knowledge, only two prior works [31, 54] build stateful stegano-
graphic techniques that avoid the minimum entropy requirement.
Focusing on asymptotic performance, both rely on error correcting
codes and have poor practical performance.

In the closest related work, the authors of [75] theoretically
analyze the limitations of using Markov Models as steganographic
samplers. The prove that any sampler with limited history cannot
perfectly imitate the true covertext channel. Our work overcomes
this limitations by considering the output of the model the target
covertext distribution.

In our work we consider more powerful machine learning models
and allow the sender and receiver to share access to the same public
model. This is a departure from prior steganographic work, moti-
vated by the public availability of high quality models [51, 52, 62]
and because this relaxation introduces signi�cant e�ciency gains.
As there has been, to our knowledge, no work testing the practi-
cal e�ciency of secure steganographic constructions for complex
channels, no other work considers this model.

Current Steganography in Practice. The main contemporary
use for steganography is to connect to Tor ([8–10]) without being
�agged by the plethora of surveillance mechanisms used by cen-
sors [19]. Steganographic techniques include protocol obfuscation,
e.g., obfs4/ScrambleSuit [11], domain fronting [76], or mimicry,
e.g., SkypeMorph [12], FTEProxy [16], StegoTorus [13], Censor-
Proofer [17], and FreeWave [18]. Although these tools allow users
to circumvent censors today, they are quite brittle. For example, pro-
tocol obfuscation techniques are not cryptographically secure and
rely on censors defaulting open, i.e., a message should be considered
innocuous when its protocol cannot be identi�ed. Protocol mimicry
techniques, encoding one protocol into another, are not always
cryptographic and often fail when protocols are under-speci�ed or
change without warning [77].

Modern steganographic techniques that are cryptographically
secure include tools like SkypeMorph [12], CensorProofer [17],

and FreeWave [18], that tunnel information through Voice-Over-IP
(VoIP) tra�c, which is usually encrypted with a pseudorandom
cipher. Once encrypted communication has started, a sender can re-
place the normal, VoIP encrypted stream with a di�erent encrypted
stream carrying the secret message. By the security of the cipher,
a censor cannot detect that the contents of the encrypted chan-
nel have been replaced and the communication looks like normal,
encrypted VoIP tra�c. If access to encrypted or pseudorandom
communication channels were suppressed, these tools would no
longer work.

There have been small-scale tests [78] at deploying cryptography
secure steganographic tagging via ISP level infrastructure changes,
as suggested in Telex [14] and TapDance [15]. These tags indicate
that a message should be redirected to another server, but stop
short of hiding full messages. These tags also critically rely on the
presence of (pseudo-)random �elds in innocuous protocol tra�c.

Practical work has been done in the �eld of format-transforming
encryption (FTE), such as [79–82]. These approaches require senders
to explicitly describe the desired covertext channel distribution, an
error-prone process requiring signi�cant manual e�ort and is in-
feasible for natural communication. None of these applications,
however, provide any kind of formal steganographic guarantee.
Recently, there has also been work attempting to leverage machine
learning techniques to generate steganographic images, i.e. [83–88],
but none of these systems provide provable security.

Generative Neural Networks. Generative modeling aims to cre-
ate new data according to some distribution using a model trained
on input data from that distribution. High quality language mod-
els [51, 52], are generative neural networks, which use neural net-
work primitives. The model itself contains a large number of “neu-
rons” connected together in a weighted graph of “layers”, which
“activate” as the input is propagated through the network. Unlike tra-
ditional feed-forward neural networks used in classi�cation tasks,
generative networks maintain internal state over several inputs to
generate new text. Training these models typically ingests data in
an e�ort to set weights to neurons, such that the model’s output
matches the input data distribution; in other words, the network
“learns” the relationships between neurons based on the input. The
�rst practical development in this �eld was the creation of long
short-term memory (LSTM) networks [89]. LSTM networks are
found in machine translation [90, 91], speech recognition, and lan-
guage modeling [55]. The transformer architecture [92], exempli�ed
by the GPT series of models [51, 52], is also becoming popular, with
results that are increasingly convincing [53].

After training, the model can be put to work. Each iteration of
the model proceeds as follows: the model takes as input its previous
state, or “context”. As the context propagates through the network,
a subset of neurons activate in each layer (based on previously
trained weights), up until the “output layer”. The output layer has
one neuron for output token, and uses the activated neurons to
assign each token a weight between 0 and 1. The model uses its
trained weights and the context input to generate a distribution of
possible tokens, each with a probability assigned. The model uses
random weighted sampling to select a token from this distribution,
returning the chosen token as output. Finally, the returned token is
appended to the context and the next iteration begins.

We note there is work focusing on di�erentiating machine-
generated text from human-generated text [93–95]. It has yet to be
seen if these techniques will remain e�ective as machine learning
algorithms continue to improve, setting the stage for an “arms race”
between generative models and distinguishers [96].

3 DEFINITIONS
3.1 Symmetric Steganography
The new construction in this work is symmetric-key stenography,
so for completeness we include symmetric-key de�nitions. The
de�nitions for public-key steganography are a straightforward
adaptation of the de�nitions provided here and can be found in [54].

A symmetric steganographic scheme ⌃D is a triple of possibly
probabilistic algorithms, ⌃D = (KeyGenD , EncodeD ,DecodeD)

parameterized by a covertext channel distribution D.

• KeyGenD(1_) takes arbitrary input with length _ and generates
: , the key material used for the other two functionalities.

• EncodeD(:,<,H) is a (possibly probabilistic) algorithm that
takes a key : and a plaintext message <. Additionally, the al-
gorithm can optionally take in a message history H , which is
an ordered set of covertext messages H = {⌘0,⌘1, . . . ,⌘ |H |�1},
presumably that have been sent over the channel. Encode returns
a stegotext message composed of 28 2 D.

• DecodeD(:, 2,H) is a (possibly probabilistic) algorithm that
takes as input a key : and a stegotext message 2 and an op-
tional ordered set of covertext messages H . Decode returns a
plaintext message < on success or the empty string Y on failure.

We use the history notation that is used in a number of previous
works [28, 29], but not universally adopted. The history input to
the encode and decode functions capture the notion that covertext
channels may be stateful. For instance, members of the ordered
set H could be text messages previously exchanged between two
parties or the opening messages of a TCP handshake.

Correctness.A steganographic protocol must be correct, i.e. except
with negligible probability an encoded message can be recovered
using the decode algorithm. Formally, for any : KeyGenD(1_),

Pr [DecodeD(:, EncodeD(:,<,H),H) =<] � 1 � negl(_) .

Security. We adopt a symmetric-key analog of the security de�ni-
tions for a steganographic system secure against a chosen hidden-
text attacks in [29], similar to the real-or-random games used in
other cryptographic notions. Intuitively, a steganographic protocol
⌃D is secure if all ppt. adversaries are unable to distinguish with
non-negligible advantage if they have access to encoding oracle
EncodeD(:, ·, ·) or a random sampling oracle $D(·, ·) that returns
a sample of the appropriate length. This ensures that an adver-
sary wishing to block encoded messages will be forced to block
innocuous messages as well. We allow the adversary to not only
have a sampling oracle to the distribution (as in [28]), but also have
the same distribution description given to the encoding algorithm.
More formally, we write,

De�nition 1. We say that a steganographic scheme ⌃D is secure
against chosen hiddentext attacks if for all ppt. adversaries AD ,

: KeyGenD(1_),

���Pr hAEncodeD (:, ·, ·))
D

= 1
i
� Pr

h
A

$D (·, ·)
D

= 1
i ��� < negl(_)

where $D(·, ·) is an oracle that randomly samples from the distri-
bution.

3.2 Ranged Randomness Recoverable Sampling
Scheme

To construct Meteor, we will need a very speci�c property that
many machine learning algorithms, like generative neural networks,
possess: namely, that the random coins used to sample from the
distribution can be recovered with access to a description of the
distribution. If it is possible to uniquely recover these random coins,
steganography is trivial: sample covertext elements using a pseu-
dorandom ciphertext as sampling randomness and recover this
ciphertext during decoding. However, generative machine learning
models do not achieve unique randomness recovery.

Meteor requires a sampling algorithm with a randomness recov-
ery algorithm that extracts the set of all random values that would
yield the sample. Because this set could possibly be exponentially
large, we requiring that the set be made up of polynomial number1

of continuous intervals, i.e. it has a polynomial space representa-
tion that can be e�ciently tested for membership. We call schemes
that have this property Ranged Randomness Recoverable Sampling
Schemes, or RRRSS. The formal interface for RRRSS schemes is
parameterized by an underlying distribution D, from which sam-
ples are to be drawn and has two ppt. algorithms. Additionaly, we
make the size of length of the randomness explicit by requiring all
random values to be selected from {0, 1}V . The two algorithms are
de�ned below:

• SampleV
D
(H , A) ! B . On history H and randomness A 2 {0, 1}V ,

sample an output B from its underlying distribution D

• RecoverV
D
(H , B) ! R . On history H and sample B , output the

set R = {A 2 {0, 1}V |SampleD(H , A) = B}.

Note that our sampling scheme takes in a history, making it some-
what stateful. This allows for conditioning sampling on priors, a
key property we require to ensure that Meteor is su�ciently �exi-
ble to adapt to new covertext distributions. For example, consider
character-by-character text generation: the probability of the next
character being “x” is signi�cantly altered if the prior character was
a “e” or a “t.”

The notion of randomness recovery has been widely studied in
cryptography, primarily when building IND � CCA2 secure public-
key cryptography, e.g. [97, 98]. These works de�ne notions like
unique randomness recovery and randomness recovery, in which the
recover algorithm run on some B returns a single value A such that
5 (:, A) = B for an appropriate function 5 and key : . Unlike the
de�nitions in prior work, we require a sample scheme over a some
distribution and the extraction of intervals.

4 ADAPTING CLASSICAL
STEGANOGRAPHIC SCHEMES

Characterizing Real Distributions. In this section, we focus on
adapting classical steganographic techniques to English language
distributions using generative models, speci�cally the GPT-2 [51]
language model. As noted in Section 2, existing steganographic
schemes require a certain, minimum amount of entropy for each
sampling event. Any positive value, no matter how small, is suf-
�cient for a channel to be “always informative,” i.e., theoretically
permit the generation of stegotext. In practice, as we will see, an
always informative channel with trivial entropy will yield extraor-
dinarily long stegotext, a problem in practice.

Practical covertext channels, on the other hand, may not be
always-informative, let alone have non-trivial entropy. Figure 2a
depicts several representative runs of the entropy over time for a
sample of tokens from the GPT-2 model. Each data point re�ects the
amount of entropy in the model after sampling G characters from
the model. The entropy varies wildly between sampling events,
and there is no clear consistency state of entropy over several
tokens. Moreover, the entropy occasionally drops close to zero. As
such, existing steganographic techniques will fail; in our testing,
Algorithm 1 from [54] has a 100% failure rate when encoding a
16-byte message using GPT-2.

Adaptation 1: Entropy Bounding. A natural adaptation to peri-
ods of low entropy would be to not attempt to encode information
while the entropy in the channel is too low. Both the sender and
receiver have access to the distribution, meaning they can both
detect periods of low entropy and skip them. This means that only
“high-entropy” events are utilized for sampling, �xing a minimum
entropy that is used in the steganographic protocol. In e�ect, this
entropy bounding creates a sort of channel-within-a-channel that
meets the always entropy requirement.

While this does increase the success rate (this method achieved
0–10% failure rate in our tests), it also introduces a new problem:
signi�cant bias in the sampled tokens. Figure 2b is a histogram
showing the probability that the selected token from the distribu-
tion would be sampled (i.e. the probability weight of the selected
tokens). In the �gure, entropy bounding for di�erent numbers of
tries are shown (:), along with a baseline sample. The baseline is
also “bounded” here: it represents the probabilities of normally-
sampled tokens when the distribution entropy was above � = 4.5.

As the �gure depicts, the entropy bounding method introduces
signi�cant bias by including a disproportionate number of tokens
in certain bins. This is because the hash function used is not un-
biased, so repeated rejection sampling from the same distribution
exacerbates the bias of the hash function. In short, there is still not
enough entropy to hide the bias introduced by the hash function.
Thus, an adversary can distinguish between an encoded message
and an innocuous one by seeing if the selection probabilities of the
messages are di�erent.
Adaptation 2: Variable Length Samples. An alternative method
to handle low-entropy periods, as proposed by [54], is to compile
the channel into one with su�cient entropy. If a channel is always

1In practice, we will be working with schemes for which there is a single set, continuous
set of random values that result in the same output.

0 5 10 15 20 25
Token Position

0

2

4

6

8

10

En
tr

op
y

Entropy over time for 4 samples

(a) Entropy of GPT-2 output distributions.
Each datapoint computed as Shannon en-
tropy of the output distribution after sam-
pling a certain number of tokens. Then, a ran-
dom token is sampled from that distribution
and appended to the context. Di�erent col-
ors represent di�erent runs starting with the
same context and di�erent randomness.

0.0 0.1 0.2 0.3 0.4 0.5
Probability of Selection

0

10

20

30

40

50

60

70

80

Re
la

tiv
e

Fr
eq

ue
nc

y
(%

)

Selection Probabilities, 16-byte message: Entropy Bound � = 4.5

Baseline (bounded)
: = 16
: = 32
: = 64
: = 128

(b) Binned probability of selecting the tokens
included in the �nal stegotext using entropy
bounding with a value of 4.5 and the GPT-
2 model. The stegotext tokens clearly come
from a di�erent distribution. Note that base-
line tokens were only sampled from events
above the entropy bound.

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Selection

0

10

20

30

40

50

Re
la

tiv
e

Fr
eq

ue
nc

y
(%

)

Selection Probabilities, 16-byte message: Resampling

Baseline
�? = : = 16
�? = : = 32
�? = : = 64
�? = : = 128

(c) Binned probability of selecting the tokens
included in the�nal stegotext variable length
sampling. Although there is slight variation
in the distributions, there is no clear dif-
ference between the stegotext and the base-
line. Moreover, this method is proved secure
in [54].

Figure 2: Investigations into adapting classical steganographic techniques.

Table 1: Performance results for model load encoding using
the method of [54] and resampling, averaged over 30 runs.
The message being encoded is the �rst 16 bytes of Lorem
Ipsum.

Parameters
Samples
(Tokens)

Time
(Sec)

Stegotext Len.
(KiB)

Overhead
(Length)

�? = : = 16 502.8 42.69 2.3 149.4x
�? = : = 32 880.4 128.41 4.1 261.8x
�? = : = 64 1645.0 361.28 7.5 482.1x
�? = : = 128 2994.6 765.40 13.6 870.7x

informative, meaning it always has some n > 0 entropy, this can
be done by sampling some �xed number ✓ elements together, such
that the resulting channel has at least ✓ ⇥ n entropy. By setting ✓
appropriately, the entropy in the compiled channel is guaranteed
to be high enough. However, in real communications channels, the
entropy in the channel may not always be non-zero. As such, a
naïve application of this approach will fall short.

We overcome this by sampling a variable number of tokens
in each sampling event, such that the cumulative entropy of the
distributions from which the tokens come surpasses the minimum
requirement. More speci�cally, instead of sampling one token at a
time in the while loop of Algorithm 1, this method samples ? tokens
until the sum of the entropy of the distributions from which those
tokens were sampled meets a minimum threshold �? . Intuitively,
this approach “collects” entropy before attempting to encode into
it, boosting success rate while avoiding the issues of low entropy.

Figure 2c shows a selection probabilities graph, with di�erent
values of �? compared against a baseline measurement of normal
sampling from the GPT-2 (note this baseline includes all sampled
tokens, unlike in Figure 2b). In the �gure, each set of runs of the
model sets _ = : , i.e., the entropy required to encode is equivalent

to the number of tries to encode. There are di�erences between the
probabilities, but here is no clear pattern – this variation can be
attributed to sampling error. [54] proved that for this approach to
be secure, �? must be strictly larger than log(:); to achieve useful
security parameters, we need�? = : ⇡ 2⇥_, where _ is the security
parameter.

While provably secure, variable length sampling results in un-
reasonably large stegotext and long encoding times. Table 1 shows
the length of stegotext and encoding times when encoding a 16
byte plaintext message using adaptation 2 on our Desktop/GPU
test environment using the GPT-2 model (refer to Section 6 for
hardware details). Each row corresponds to 30 runs of the model for
that set of parameters. As �? (and thereby :) increase, the length
of the stegotext also increases: the higher resampling entropy re-
quirement means that more tokens must be sampled, which takes
more time. We note that these results include GPU acceleration, so
there is little room for performance boosts from hardware.

5 METEOR: A MORE EFFICIENT
SYMMETRIC-KEY STEGANOGRAPHIC
SCHEME

We now design a symmetric-key steganographic scheme that is
more practical than the techniques above. A more e�cient symmetric-
key approach would allow for hybrid steganography, in which a
sender encodes a symmetric key using the public-key steganog-
raphy and then switches to a faster and more e�cient encoding
scheme using this symmetric key. We note that while symmetric-
key approaches have been considered in the past, e.g. [28, 68], they
also rely on the entropy gathering techniques highlighted above.
Our approach’s intuition to accommodate high entropy variability is
to �uidly change the encoding rate with the instantaneous entropy
in the channel. As will become clear, Meteor does this implicitly,
by having the expected number of bits encoded be proportional to
the entropy.

5.1 Intuition
Suppose we have, for example, a generative model M trained to
output English text word-by-word. Each iteration takes as input
all previously generated words H and outputs a probability dis-
tribution P for the next word, de�ned over all known words T .
This is done by partitioning the probability space between 0 and
1 (represented at some �xed precision) into continuous intervals
A0, A1, . . . , A< corresponding to each valid word. For instance, if the
precision is 5 bits, A0 might be interval [00000, 00101), A1 might
be [00101, 10000), and so on. The algorithm then generates a uni-
form random value A 2 [00000, 11111], �nds the interval A8 into
which A falls, and outputs the corresponding word. In the example,
if A = 01110, then the word corresponding to A1 would be chosen. In
practice, these values all have much higher precision, for example
A 2 {0, 1}32, A8 2 {0, 1}32

⇥ {0, 1}32.
Meteor embeds messages into the random number A used to

sample from the model, as illustrated in Figure 3. Consider the
information that a potential receiver with access to the model might
learn from a single output of the generative model. Because the
receiver has access to M, they can recover the interval A8 into which
A must have fallen. Note that a A8 might contain a huge — possibly
exponential — number of possible values that would all yield the
same sample, meaning the receiver cannot uniquely recover the
true value of A . However, because the intervals are continuous, all
such values may share a pre�x, e�ectively �xing the �rst few bits
of A in the view of the receiver. In this example above, all values
in A1 are contained in the �rst half of the distribution space, so
the receiver can conclude the �rst bit of A must have been a 0.
Similarly, if the word corresponding to A0 had been chosen, the
�rst bits of A must have been 00. Another example can be seen in
Figure 3, in which the interval corresponding to the word “The”
shares the pre�x 01, so a receiver can recover these bits. In this way,
if A is a function of the hidden message, the receiver can potentially
recover bits of information about the message with each output of
the model. Because the sender and receiver share the description
of the distribution, the sender can determine how many bits will
be recoverable, and then discard those bits before repeating the
process.

The key challenge in this setting is keeping the message hidden
from the adversarial censor with access to the same distribution.
Clearly, using the bits of the message as the randomness is inse-
cure, as a censor with the same model could extract the message.
Encrypting the message with a pseudorandom cipher, as in the
public-key solution above, is also insu�cient because it is possible
that the encoder will be forced to reuse randomness. For example,
consider a probability distribution in which the values of the inter-
val containing A have no shared pre�x, but 90% of the values in that
interval begin with a 0. Because no bits are transmitted and the
next iteration will use the same value of A . The censor now knows
that with 90% likelihood, A in the second sampling event begins
with zero. Over enough trials, a censor could detect this bias and
distinguish between honestly sampled output and stegotext.

To avoid the reuse of randomness, Meteor generates a fresh
mask for A each time the sender samples an output. This is done
using a PRG, keyed with state shared by the sender and receiver,
and applied using XOR. The receiver recovers as many bits of A as

possible and then unmasks them with the corresponding XOR mask
to recover bits of the message. Conceptually, this can be seen as
repeatedly encrypting the message with a stream cipher, facilitating
bit-by-bit decryption. This novel encoding technique means the
number of bits that can be transmitted in each sampling event is not
�xed. In practice, this is a huge advantage, as the expected number
of bits transmitted is proportional to the entropy in the channel
without requiring any explicit signaling (see Section 5.2). Finally, it
is intuitively clear why this approach yields a secure scheme: (1)
each sampling event is performed with a value of A that appears
independent and random and (2) all bits that can be recovered are
obscured with a one-time pad.

5.2 Meteor
For notation, let _ be a security parameter, n be the empty string,
and k represent concatenation or appending to an ordered set,
as appropriate. We adopt Python-like array indexing, in which
G [0 : 1] includes the elements of G starting with 0 and ending with
1, exclusive. Finally, we use two subroutines LenPrefixV (·) and
PrefixV (·), presented in Algorithm 2 and Algorithm 3, respectively.
The �rst gives the length of the longest shared bit pre�x of elements
in the set, and the second returns this bit pre�x explicitly.

Pseudorandom Generators. Our construction leverages a pseu-
dorandom generator PRG [99]. For a more formal treatment of the
security notions of PRGs, see [100] and the citations contained
therein. We adopt the notation used in stateful PRGs. Speci�cally,
let the PRG have the functionalities PRG.Setup and PRG.Next. The
setup algorithm generates the secret state material, which we will
denote :?A6 for simplicity, and the next algorithm generates V pseu-
dorandom bits. We require that the PRG satisfy at least the real-or-
random security games.

Construction. Meteor consists of three algorithms, parameterized
by a bit precision V and a model M that supports a RRRSS. We use
a generative model M as our instantiation of the distribution D

for an RRRSS as de�ned in Section 3. The key generation algorithm
KeyGenV

M
is presented in Algorithm 4, the encoding algorithm

EncodeV
M

is presented in Algorithm 5, and the decoding algorithm

DecodeV
M

is presented in Algorithm 6.
The precision V 2 Z, V > 0 controls the maximum number of bits

that can be encoded in each iteration. V should be the accuracy of the
underlying sampling scheme. Most models in our implementation
give probability distributions accurate to 32 bits, so we set V = 32.
In our tests, it is incredibly unlikely that 32 bits will successfully be
encoded at once, meaning using a lower V is likely acceptable.

Because the model used in sampling is a generative one, the
model maintains state on its previous inputs. Each distribution
generated by the model is dependent on the values sampled from
previous distributions. Additionally, the model requires an initial
state to begin the generative process. This state is abstracted by the
history parameter H passed to instances of Encode and Decode.
This allows the distributions generated by each successful sampling
of a covertext token 28 to remain synchronized between the two
parties. We assume that the entire history H is maintained between
the parties, including the initial state that primes the model.

Attack@Dawn

 0101 0111 1100 1001

PRG Mask: 0001 0110 1011 1101

Generative
Model

Evidence indicates that
the asteroid fell in the
Yucatan Peninsula, at
Chicxulub, Mexico.

An The A However Since

Message Bits: 0100 0001 0111 0100 The first importance of the Yucatan
Peninsula is demonstrated with the
following conclusion: the Pliocene
Earth has lost about seven times as
much vegetation as the Jurassic in
regular parts of the globe, from
northern India to Siberia…

Plaintext

Context

StegotextEncoder

Figure 3: An overview of the encoding strategy forMeteor. In each iteration ofMeteor, a new token (shown in green) is selected
from the probability distribution created by the generative model. Depending on the token selected, a few bits (shown in red)
can be recovered by the receiver. The stegotext above is real output from the GPT-2 model.

The encoding algorithm loops through three stages until the
entire message has been successfully encoded: (1) generating and
applying the mask, (2) sampling a next output to append to the
covertext, and (3) updating the state of the algorithm based on the
output of the sampling event. In the �rst stage, the mask is computed
as the output of a pseudorandom generator and is applied with the
XOR operation. The resulting value, A is distributed uniformly in
[0, 2V+1

), as each bit of A is distributed uniformly in {0, 1}. This
random value is then used in step (2) to sample the next output of
the sampling scheme. To determine the number of bits this sampling
event has successfully encoded, the encoding algorithm uses the
RecoverV functionality of the RRRSS and calls LenPrefix on the
resulting (multi-)set. Finally, the algorithm then updates the V bits
that will be used in the next iteration, and updates its other state
as appropriate.

The decoding algorithm performs these same three stages, but
with the order of the �rst two reversed. With knowledge of the
output of each sampling stage 28 , the �rst algorithm calls RecoverV
and Prefix to recompute some (possibly zero) leading bits of the A .
Then, it calculates the mask that was used by the encoder for those
bits and removes the mask. The bits recovered in this way make up
the message.

Note that we do not discuss reseeding the PRG. Most PRGs have
a maximum number of bits that can be extracted before they are
no longer considered secure. Because the PRG secret information
is shared by the sender and receiver, they can perform a rekeying
or key ratcheting function as necessary.

Proof of Security. We sketch the proof of security, as the formali-
ties of this simple reduction are clear from the sketch. Consider an
adversary A which has non-negligible advantage in the security
game considered in De�nition 1. We construct an adversary Â

with non-negligible advantage in the PRG real-or-random game,
with oracle denoted '(·). To properly answer queries from A, Â
runs the encoding algorithm in Algorithm 2 with an arbitrary in-
put message, but queries the '(·) to obtain the mask required for
sampling. Additionally, Â keeps a table of all queries sent by A

and the responses. When A queries the decoding algorithm, Â
checks its table to see if the query matches a previous encoding

query, and responds only if it is an entry in the table. Note that if
'(·) implements a true random function, the encoding algorithm
simply samples a random message from the distribution. When A

terminates, outputting a bit 1, Â outputs 1 as well.
As the message is masked by the queries Â sends to '(·), A

must be able to distinguish between a true-random output and the
xor of a message with a one-time pad. Because XOR preserves the
uniformly-random distribution of the pad, this is not possible with
non-negligible probability.

E�ciency. The asymptotic, expected throughout of Meteor is pro-
portional to the entropy in the communication channel. To see this,
note that the expected throughput for each sampling event can
be computed as

Õ
82 |P | ?8Exp(?8), where P is the distribution in

the channel for the sampling event, ?8 is the probability of each
individual outcome, and Exp(·) is the expected number of shared
pre�x bits for some continuous interval of size ?8 . Thus, if Exp(?8) is
proportional to � log2 (?8), Meteor is asymptotically optimal (recall
that entropy, the information-theoretic boundary for information
transmission, is computed as �

Õ
82 |P | ?8 log(?8)). We show in Ap-

pendix A that Exp(?8) � 1
2 (� log2 (?8) � 1) for ?8 1

2 by carefully
observing the behavior of the LenPrefix function when evaluated
on a �xed sized interval with a random starting point between
[0, 2V+1

) .

6 EVALUATION OF METEOR
In this section we discuss our implementation of Meteor and eval-
uate its e�ciency using multiple models. We focus on evaluating
Meteor, not a hybrid steganography system using the public key
stegosystem in Section 4, because it is signi�cantly more e�cient.
Moreover, the e�ciency of a hybrid stegoanography system is de-
termined by the e�ciency of its constituent parts; the cost of such a
scheme is simply the cost of transmitting a key with the public key
scheme (see Section 4) plus the cost of transmitting the message
with Meteor. An interactive online demonstration of our system is
available at https://meteorfrom.space.
Implementation details. We implemented Meteor using the Py-
Torch deep learning framework [101]. We realize the PRG function-
ality with HMAC_DRBG, a deterministic random bit generator de�ned

https://meteorfrom.space

Algorithm 2: LenPrefixV

Input: Set of Bit Strings R = {A1, A2, . . . A=}
Output: Length ✓
✓ 1
while ✓ < V do

if 9 8, 9 2 {1, . . . ,=} such that A8 [0 : ✓] < A 9 [0 : ✓] then
Output ✓ � 1

✓ ✓ + 1
Output ✓

Algorithm 3: PrefixV

Input: Set of Bit Strings R = {A1, A2, . . . A=}
Output: Bit String B
Output A1 [0 : LenPrefixV (R)]

Algorithm 4: KeyGenV
M

Input: 1_
Output: Key :?A6
Output :?A6 PRG.Setup(1_)

Algorithm 5: EncodeV
M

Input: Key :?A6 , Plaintext Message<, History H

Output: Stegotext Message 2
2 Y,= 0
while = < |< | do

<0B: PRG.Next(:?A6)
A <[= : = + V] �<0B:

28 SampleV
M

(H , A)

R RecoverV
M

(H , 28)

=8 LenPrefixV (R)
2 2 k28 ,= = + =8 , H H k28

Output 2

Algorithm 6: DecodeV
M

Input: Key :?A6 , Stegotext Message 2 , History H

Output: Plaintext Message<
G Y
Parse 2 as {20, 21, . . . , 2 |2 |�1}

for 8 2 {0, 1, . . . , |2 | � 1} do
R RecoverV

M
(H , 28)

G8 PrefixV (R)
<0B: PRG.Next(:?A6)
G G k (G8 �<0B: [0 : |G8 |])
H H k28

Output G

Figure 4: Algorithms for Meteor

in NIST SP 800-90 A Rev. 1 [102]. The implementation supports any
type of binary data, such as UTF-8-encoded strings or image �les,
as input.

Algorithm 7: SampleV
M

for the GPT-2 model.

Input: Randomness A 2 {0, 1}V , History H

Output: Token =4GC
T ,P NextM(H)

2D<; 0
for 8 2 {0, 1, . . . , |T | � 1} do

2D<; 2D<; + P[8]
if 2D<; > A then

Output =4GC T [8]

Output =4GC T [|T | � 1]

Algorithm 8: RecoverV
M

for the GPT-2 model.

Input: History H , Sample B
Output: Randomness set R
T ,P NextM(H)

2D<; 0
for 8 2 {0, 1, . . . , |T | � 1} do

if T [8] = B then
Output
R {A 2 {0, 1}V | 2D<; A < 2D<; + P[8]}

2D<; 2D<; + P[8]
Output R ;

Figure 5: RRRSS algorithms for GPT-2 model. T is an array
of possible next tokens and P is the probability associated
with each of these tokens.

To illustrate Meteor’s support for di�erent model types, we im-
plemented the algorithm with the weakened version of the GPT-2
language model released by OpenAI and two character-level recur-
rent neural networks (RNN) that we train. The GPT-2 model [51]
is a generative model of the English language. It parses language
into a vocabulary of words and generates words when given previ-
ous context. Meteor encodes stegotext into these generated words.
The character-level models generate ASCII characters in each it-
eration. These models output lower-quality English text, but are
more generalizable. Character-level models work with any data that
can be represented as text, including other languages and non-text
protocols, whereas word-level models are speci�c to the English
language models.

Our GPT-2 codebase builds upon that of [44]. We note that the
next-generation GPT language model, GPT-3, has been published
by OpenAI [52]; however, at the time of this writing, the codebase
for the GPT-3 has not been released. The GPT-3 interface is the same
as the GPT-2, meaning integration will be automatic, increasing
stegotext quality while maintaining security guarantees. Example
stegotext generated with the GPT-2 model can be found in Appendix
C.

Figure 5 shows how to instantiate the SampleV
M

and RecoverV
M

algorithms from Section 3 with the distribution represented as a gen-
erative model M (in discussion of classical steganography, we used
D). Both algorithms use NextM(H), which generates an array of
possible next tokens T and an array of probabilities associated with
each token P using the model’s internal structure. The SampleV

M

Table 2: Performance measurements for Meteor on the GPT-
2 by device for a shorter context. Times are provided in sec-
onds.

Device Load Encode Decode Overhead (time)

GPU 5.867 6.899 6.095 1⇥
CPU 5.234 41.221 40.334 4.6⇥
Mobile 1.830 473.58 457.57 49.5⇥

for generative networks accumulates the probabilities and selects
the �rst token for which the cumulative probability exceeds the
randomness supplied. This is equivalent to multinomial sampling,
and is the unmodi�ed method of sampling normally from the GPT-2
model. In the unmodi�ed (i.e., non-Meteor) case, the GPT-2 chooses
a true random value A instead of a PRG as in Meteor. RecoverV

M

inverts the process, returning the entire set of random values that
would yield the target sample B .

In addition to the GPT-2 variant, we trained two character-level
RNN models to test with Meteor, using the code of [103] with lo-
cally trained models. Each model uses long short term memory
(LSTM) cells to store state [89]. The �rst model, named “Wikipedia”,
was trained on the Hutter Prize dataset [104], which consists of
a subset of English Wikipedia articles. The data from this model
contains English text structured with Wiki markup. The output
of this model is good, but its character-level nature makes its out-
puts less convincing human text than GPT-2 output. The second
model, named “HTTP Headers”, consist of the headers for 530,128
HTTP GET requests from a 2014 ZMap scan of the internet IPv4
space [105, 106]. This highly structured dataset would facilitate
hiding messages amongst other HTTP requests. We note that the
�exibility of character-level models allows us to generalize both
text-like channels and protocol-esque channels [55]. Both mod-
els have three hidden layers. The Wikipedia model has a hidden
layer size 795 and was trained for 25,000 epochs. The HTTP head-
ers model has size 512 and was for 5,000 epochs, due to its more
structured nature. The two models were trained at a batch size of
100 characters and learning rate 0.001. Example output from the
Wikipedia character-level model can be found in Appendix C.
Evaluation hardware. To measure performance across di�erent
hardware types, we evaluate Meteor on 3 systems: (1) Desktop/GPU,
a Linux workstation with an Intel Core i7-6700 CPU, NVIDIA TI-
TAN X GPU, and 8 GiB of RAM, (2) Laptop/CPU, a Linux laptop
with an Intel Core i7-4700MQ CPU, no discrete GPU, and 8 GiB of
RAM, and (3) Mobile, an iPhone X running iOS 13. The Desktop
ran benchmarks on the GPU, while the Laptop machine ran on the
CPU; as such, the Laptop is more representative of consumer hard-
ware. We evaluate Meteor on both the Desktop and Laptop using
each of the three models discussed above. Additionally, we evaluate
reordering and native compression optimizations (see below). The
results are summarized in Table 3. We discuss mobile benchmarks
separately at the end of this section.
Model performance. The capacity, or number of bits encoded
per token, is much higher for the GPT-2 model examples than for
the Wikipedia and HTTP Headers models. Intuitively, the word-
level nature of GPT-2 means there is usually more entropy in each

0 50 100 150 200 250 300
Plaintext Length

0

20

40

60

80

100

Ti
m

e
to

En
co

de
an

d
D

ec
od

e

GPT-2
Wikipedia
HTML Headers

Figure 6: Comparison of plaintext length versus time to run
encoding and decoding for di�erent Meteor models. ' =
0.9745 (GPT-2), 0.9709 (Wikipedia), 0.9502 (HTTP Headers)

distribution, whereas the character-level models have, at most, 100
printable ASCII characters from which to sample; this pushes the
capacity of a single token to be much higher as a result. The stark
di�erence in capacity between the capacities of Wikipedia and
HTTP Headers can be attributed to the di�erence in structure of
the training data. The Wikipedia dataset, although structured, is
mostly English text. On the other hand, the HTTP Headers dataset is
based on the HTTP protocol, which is rigid in structure — variation
only exists in �elds that can change, such as dates and URLs.
Encoding statistics. Our next suite of benchmarks measures the
relationship between the length of message and the time it takes
to produce a stegotext. We generated plaintexts randomly and
encoded them, incrementing the length of the message by one in
each run. The results are plotted in Figure 6, which shows a clear
linear relationship between the two variables. It is also apparent
from the plot that the variance in encoding time increases as the
length increases. This is because as tokens are selected, the model
state can diverge; in some of these branches, the entropy may be
very low, causing longer encoding times. This is ampli�ed in the
HTTP Headers model, as the baseline entropy is already very low.
Heuristic optimizations. In addition to implementing Meteor, we
also evaluated two heuristic optimizations that could yield shorter
stegotext. The �rst optimization is deterministically reordering
the model’s output distribution intervals to maximize expected
throughput. Because this deterministic process does not change the
relative sizes of the interval, it does not impact the distribution of
the stegotext. However, because the placement of the intervals is
usually arbitrary, it is possible to move large intervals that would
normally have no shared pre�x to a starting location where there is
a shared pre�x, potentially increasing throughput. A more thorough
discussion of this technique can be found in Appendix B.

We evaluate this optimization for all three of our models (see
Table 3). For the GPT-2 model, we see a marked (24.8%) increase in
capacity as well as a proportional reduction in stegotext length as a
result of reordering the model outputs. The reordering does induce
computational overhead, as the distribution over which the heuris-
tic is performed is large (max 50,256 tokens). Reordering induces

a 0.5% overhead in the Laptop/CPU, where updating the model is
slow, and 69.0% overhead in the Desktop/GPU, where updating the
model is fast. For the lower entropy models, the reordering algo-
rithm we use is signi�cantly faster, but yields mixed results. We
believe these mixed results are an artifact of our choice of greedy
reordering algorithms, which may perform poorly with heavily
biased distributions.

The second optimization is to use the model itself as a compres-
sion function when encoding with an English language model, as
in [44]. This technique leverages the fact that all known words in
the model’s vocabulary are internally represented by a unique num-
ber, taking fewer bits than its normal ASCII representation. Before
encoding, the secret message can be tokenized and each token can
be replaced by its unique identi�er. These identi�ers are then parsed
as bits and encoded as normal. When implemented with GPT-2,
we see a 47.77% decrease in time spent on CPU, and an associated
52.5% decrease in stegotext size. While powerful, this technique
can only be used to encode English language messages into Eng-
lish language models. Compressing the plaintext message using
traditional compression (e.g., GZip) would yield similar results.

Mobile benchmarks. Because Meteor is intended for censorship
resistance, it is natural to benchmark it on mobile devices, where
most sensitive communication happens. We implement Meteor on
iOS using the CoreML framework, utilizing an existing GPT-2 iOS
implementation as a base [107]. To our knowledge, our work repre-
sents the �rst evaluation of a neural network-based steganographic
system on a mobile device. Our implementation, in Swift, employs
an even smaller version of the GPT-2 model which �ts on mobile
devices as it uses smaller size context. An example of the output
from this experiment can be found in Appendix C.

Our results are summarized in Table 2. The Mobile benchmark in
the table was performed on the iPhone X Simulator, as we wished to
instrument and pro�le our tests. We separately con�rmed that sim-
ulator runtimes were similar to those of actual iPhone X hardware.
While Laptop/CPU is 4.6⇥ slower than Desktop/GPU, the Mobile
runtime is a massive 49.5⇥ slower than the baseline case. While
deep learning is supported on mobile platforms like iOS, the inten-
sive, iterative computations required by Meteor and other neural
stegosystems are not performant on mobile systems. Nonetheless,
our proof-of-concept demonstrates that Meteor could be used in
a mobile context, and hardware improvements [108] would allow
for secure communication between users even when available com-
munication platforms do not o�er end-to-end encryption, such as
WeChat.

7 COMPARISON TO NLP-BASED
STEGANOGRAPHY

Noting the appeal of hiding sensitive messages in natural text, re-
searchers in the �eld of natural language processing (NLP) have
recently initiated an independent study of steganography. Unfor-
tunately, this work does not carefully address the security impli-
cations of developing steganographic systems from NLP models.
Instead, the results employ a variety of ad-hoc techniques for em-
bedding secret messages into the output of sophisticated models.
The resulting papers, often published in top NLP conferences, lack
rigorous security analyses; indeed, existing work cannot be proven

secure under the de�nitions common in the cryptographic liter-
ature. Highlighting this weakness, there is a concurrent line of
work in the same conferences showing concrete attacks on these
schemes, e.g., [45–50].

The �rst wave of steganographic techniques in the NLP com-
munity leverages synonyms and grammatical reorganization for
encoding, e.g., [32–36, 42]. The key observation in this work is
that natural variation in linguistic patterns can be used to hide
information. For instance, if one of two synonyms can be used in
a sentence, each with probability .5, then the selection conveys
a bit of information. Similarly, comma usage or word order can
be used to encode small amounts of information. Because not all
possible linguistic variations occur with equal likelihood, some of
these works adapt a Hu�man encoding scheme to facilitate variable
length encoding, e.g., [32, 36]. These approaches rely on linguistic
idiosyncrasies and are therefore not generalizable.

More recently, researchers found ways to use the structure of
these models to steganographically encode information, including
LSTMs [37], Generative Adversarial Networks [38], Markov Mod-
els [39], and other forms of Deep Neural Networks [40, 41, 43, 44].
Rather than give an exhaustive description of the encoding tech-
niques used in these works, we give a brief description of the most
important techniques.

Early constructions directly modi�ed the distributions. One such
construction [37] organized the distribution into “bins,” each rep-
resenting a short bitstring, and randomly selected an output from
the bins corresponding to the message.2 Building on this intuition,
other research [41, 43] uses Hu�man coding to encode variable
numbers of bit in each iteration. More recent work has attempted
to use the message itself as the sampling method, a method known
as “arithmetic coding” [44]. This method attempts to convert a
plaintext message into a deterministic stegotext based on its con-
tents, iteratively using bits from the message to sample into the
distribution. The �rst two constructions heavily modify the output
distribution, rendering stegotext easily detectable. The arithmetic
construction is also insecure, since it reuses randomness in multi-
ple sampling events, a problem similar to the one that Meteor is
designed to overcome.

The relaxed adversarial models considered in the NLP commu-
nity lead to signi�cantly less robust constructions. For instance,
the adversaries in the NLP literature do not have access to the
model [37, 41, 43, 44], signi�cantly limiting the attacks they can
mount. Without this assumption, an adversary can clearly di�eren-
tiate between a stegotext and covertext by identifying biases in the
output distribution. The adversary compares the candidate output
to random samples from the model, easily distinguishing when a
stegosystem is being run and defeating the purpose entirely.

The NLP threat model folds in the face of an advanced, persis-
tent adversary who can always ex�ltrate the model through other
means. Moreover, recent advanced in adversarial machine learning
have demonstrated how even the “secret” parameters of a black-
box model can be extracted by seeing enough output [109–111],
unlike that of encryption keys or pseudorandom functions. This
pervasive requirement that the model remains private informa-
tion is therefore unreasonable. Unable to achieve cryptographic

2A similar, but secure, partition based approach is investigated in [27]

Table 3:Model statistics for encoding a 160-byte plaintext. Timing results re�ectmodel load, encoding, and decoding combined.

Mode
Desktop/GPU

(sec)
Laptop/CPU

(sec)
Stegotext Length

(bytes)
Overhead
(length)

Capacity
(bits/token)

GPT-2 18.089 82.214 1976 12.36⇥ 3.09
GPT-2 (Reorder) 30.570 82.638 1391 8.69⇥ 4.11
GPT-2 (Compress) 11.070 42.942 938 3.39⇥ 3.39
Wikipedia 19.791 46.583 2002 12.51⇥ 0.64
Wikipedia (Reorder) 15.515 39.450 1547 9.67⇥ 0.83
HTTP Headers 49.380 103.280 6144 38.4⇥ 0.21
HTTP Headers (Reorder) 57.864 127.759 7237 45.23⇥ 0.18

Table 4: Comparative distribution statistics for samples
from neural steganography algorithms in prior NLP work,
with random sampling as a baseline. “N/A” indicates that a
metric is not relevant for an algorithm.

Algorithm Perplexity KL-Divergence Capacity Entropy Secure?

Meteor (this) 21.60 0.045 3.09 6.30 3
Arithmetic [44] 29.22 0.082 4.82 6.66 7
Hu�man [41, 43] 8.85 0.851 2.31 N/A 7
Bins [37] 50.82 2.594 3.00 N/A 7
Random Sample 13.82 0.040 N/A 5.36 N/A

security, these constructions evaluate their work by measuring
the statistical di�erence between the output produced by the en-
coding scheme and real text. Highlighting the weaknesses of these
schemes, numerous attack papers have been published, e.g., [45–50].
These attacks use machine learning techniques to detect the pres-
ence of encoded messages generated with some of the works listed
previously. Ad-hoc and non-cryptographic security is insu�cient
to provide security against powerful and determined adversaries,
especially nation-state adversaries.
Comparative Analysis. We assess Meteor against the following
previous solutions: (1) bins [37], (2) Hu�man coding [41], and (3)
arithmetic coding [44]. We compare standard NLP language statis-
tics for these with a regular, random sample from the model, and
provide our results in Table 4. Note that we mark entropy as “N/A”
for Hu�man and bins because these methods use a binning algo-
rithm which prevents us from calculating entropy meaningfully.
The random sample is a control distribution, and is not encoding
anything thereby having “N/A” capacity.

Of particular note in our results is the Kullback-Leibler (KL)
divergence across algorithms, which in this case compares the
distribution of the model to the output distribution of the algo-
rithm. The KL-divergence for Meteor is very close to that of the
random sample, as Meteor merely changes the randomness to
steganographically-encoded randomness. As discussed previously,
algorithms that modify distributions from the model have high
biases, and this is re�ected in the KL-divergence of Hu�man and
bins being much higher than the rest. The arithmetic algorithm has
a lower KL-divergence than the rest of the NLP algorithms, as it
does not modify the distribution; however, it has a higher value
than Meteor because it reuses randomness, while Meteor uses fresh
randomness like the baseline random sample does.

We also note that the security properties of Meteor do not ham-
per the capacity metric signi�cantly. Arithmetic output has a higher
capacity, but we note that the insecurity of this system makes this
additional capacity moot; modifying the parameters to Hu�man
or bins could have yielded the same capacity with the same secu-
rity vulnerabilities. Table 4 also includes perplexity and entropy
statistics, that show Meteor is competitive in performance with the
insecure primitives proposed previously.

8 CONCLUSION
In this work we present an analysis of the practical limitations of
using cryptographically secure steganography on real, useful distri-
butions, identifying the need for samplers and impractical entropy
requirements as key impediments. We show that adapting existing
public key techniques is possible, but produces stegotext that are
extremely ine�cient. We then present Meteor, a novel symmetric
key steganographic system that dramatically outperforms public
key techniques by �uidly adapting to changes in entropy. We eval-
uate Meteor, implementing it on GPU, CPU, and mobile, showing
that it is an important �rst step for universal, censorship-resistant
steganography. Finally, we compare Meteor to existing insecure
steganographic techniques from the NLP literature, showing it has
comparable performance while actually achieving cryptographic
security.

ACKNOWLEDGEMENTS
The �rst author is supported by the National Science Founda-
tion under Grant #2030859 to the Computing Research Associ-
ation for the CIFellows Project and DARPA under Agreement No.
HR00112020021. Part of this work was completed while the �rst
author was at Johns Hopkins University. The second and fourth
authors are funded by the NSF under awards CNS-1329737 and CNS-
1955172. The third author is supported by NSF under awards CNS-
1653110 and CNS-1801479, the O�ce of Naval Research under con-
tract N00014-19-1-2292, DARPA under Contract No. HR001120C0084,
and a Security and Privacy research award from Google. Signi�-
cant elements of this work were conducted while the �rst, second,
and fourth authors were supported by NSF award CNS-1330491.
The �rst author would like to thank Adam Poliak for his early
help shaping this project. Additionally, the �rst author would like
to thank Eric Wustrow for his insight into censorship resistance
techniques. Any opinions, �ndings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do

not necessarily re�ect the views of the United States Government
or DARPA.

REFERENCES
[1] T. Perrin and M. Marlinspike, “he double ratchet algorithm.” Available at https:

//whispersystems.org/docs/speci�cations/doubleratchet/.
[2] WhatsApp, “WhatsApp Encryption Overview.” Available at https://scontent.

whatsapp.net/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/
WhatsApp-Security-Whitepaper.pdf, December 2017.

[3] K. Conger, “Whatsapp blocked in brazil again.”
https://techcrunch.com/2016/07/19/whatsapp-blocked-in-brazil-again/,
Jul 2016.

[4] T. Fish, “Whatsapp banned: Countries where whatsapp is blocked mapped.”
https://www.express.co.uk/life-style/science-technology/1166191/whatsapp-
ban-map-which-countries-where-whatsapp-blocked-censorship-china-
banned, Aug 2019.

[5] A. Shahbaz, “Freedom on the net 2018.” Available at https://freedomhouse.org/
report/freedom-net/freedom-net-2018/rise-digital-authoritarianism, 2018.

[6] Freedom House, “Freedom on the net 2018 map.”
https://freedomhouse.org/report/freedom-net/freedom-net-2018/map, 2018.

[7] R. S. Raman, A. Stoll, J. Dalek, R. Ramesh, W. Scott, and R. Ensa�, “Measuring
the deployment of network censorship �lters at global scale,” in Network and
Distributed Systems Security (NDSS) Symposium 2020, 2020.

[8] Tor Project, “The tor project: Privacy and freedom online.”
https://www.torproject.org/.

[9] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation
onion router,” in Proceedings of the 13th Conference on USENIX Security Sympo-
sium - Volume 13, SSYM’04, (Berkeley, CA, USA), pp. 21–21, USENIX Association,
2004.

[10] M. G. Reed, P. F. Syverson, and D. M. Goldschlag, “Anonymous connections
and onion routing,” IEEE Journal on Selected Areas in Communications, vol. 16,
pp. 482–494, May 1998.

[11] P. Winter, T. Pulls, and J. Fuß, “Scramblesuit: A polymorph network protocol to
circumvent censorship,” CoRR, vol. abs/1305.3199, 2013.

[12] H. M. Moghaddam, B. Li, M. Derakhshani, and I. Goldberg, “SkypeMorph: pro-
tocol obfuscation for Tor bridges,” in ACM CCS 2012 (T. Yu, G. Danezis, and V. D.
Gligor, eds.), pp. 97–108, ACM Press, Oct. 2012.

[13] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister, S. Cheung, F. Wang,
and D. Boneh, “StegoTorus: a camou�age proxy for the Tor anonymity system,”
in ACM CCS 2012 (T. Yu, G. Danezis, and V. D. Gligor, eds.), pp. 109–120, ACM
Press, Oct. 2012.

[14] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman, “Telex: Anticensor-
ship in the network infrastructure,” in Proceedings of the 20th USENIX Security
Symposium, Aug. 2011.

[15] E. Wustrow, C. M. Swanson, and J. A. Halderman, “Tapdance: End-to-middle
anticensorship without �ow blocking,” in 23rd {USENIX} Security Symposium
({USENIX} Security 14), pp. 159–174, 2014.

[16] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Protocol misidenti�-
cation made easy with format-transforming encryption,” in Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security, pp. 61–72,
ACM, 2013.

[17] Q. Wang, X. Gong, G. T. K. Nguyen, A. Houmansadr, and N. Borisov, “Censor-
Spoofer: asymmetric communication using IP spoo�ng for censorship-resistant
web browsing,” in ACM CCS 2012 (T. Yu, G. Danezis, and V. D. Gligor, eds.),
pp. 121–132, ACM Press, Oct. 2012.

[18] A. Houmansadr, T. J. Riedl, N. Borisov, and A. C. Singer, “I want my voice to
be heard: IP over voice-over-IP for unobservable censorship circumvention,” in
NDSS 2013, The Internet Society, Feb. 2013.

[19] M. C. Tschantz, S. Afroz, Anonymous, and V. Paxson, “Sok: Towards grounding
censorship circumvention in empiricism,” in 2016 IEEE Symposium on Security
and Privacy (SP), pp. 914–933, May 2016.

[20] R. Ensa�, P. Winter, A. Mueen, and J. R. Crandall, “Analyzing the great �rewall
of china over space and time,” PoPETs, vol. 2015, pp. 61–76, Jan. 2015.

[21] B. Marczak, N. Weaver, J. Dalek, R. Ensa�, D. Fi�eld, S. McKune, A. Rey, J. Scott-
Railton, R. Deibert, and V. Paxson, “An analysis of china’s “great cannon”,” in 5th
{USENIX} Workshop on Free and Open Communications on the Internet ({FOCI}
15), 2015.

[22] R. Ensa�, D. Fi�eld, P. Winter, N. Feamster, N. Weaver, and V. Paxson, “Examining
how the great �rewall discovers hidden circumvention servers,” in Proceedings
of the 2015 Internet Measurement Conference, pp. 445–458, 2015.

[23] M. Bevand, “My experience with the great �rewall of china.”
http://blog.zorinaq.com/my-experience-with-the-great-�rewall-of-china/, Jan
2016.

[24] K. Bock, iyouport, Anonymous, L.-H. Merino, D. Fi�eld, A. Houmansadr, and
D. Levin, “Exposing and circumventing china’s censorship of esni,” 8 2020.

[25] G. J. Simmons, “The prisoners’ problem and the subliminal channel,” in
CRYPTO’83 (D. Chaum, ed.), pp. 51–67, Plenum Press, New York, USA, 1983.

[26] R. J. Anderson and F. A. Petitcolas, “On the limits of steganography,” IEEE Journal
on selected areas in communications, vol. 16, no. 4, pp. 474–481, 1998.

[27] C. Cachin, “An information-theoretic model for steganography.” Cryptology
ePrint Archive, Report 2000/028, 2000. http://eprint.iacr.org/2000/028.

[28] N. J. Hopper, J. Langford, and L. von Ahn, “Provably secure steganography,” in
CRYPTO 2002 (M. Yung, ed.), vol. 2442 of LNCS, pp. 77–92, Springer, Heidelberg,
Aug. 2002.

[29] L. von Ahn and N. J. Hopper, “Public-key steganography,” in EUROCRYPT 2004
(C. Cachin and J. Camenisch, eds.), vol. 3027 of LNCS, pp. 323–341, Springer,
Heidelberg, May 2004.

[30] M. Backes and C. Cachin, “Public-key steganography with active attacks,” in
TCC 2005 (J. Kilian, ed.), vol. 3378 of LNCS, pp. 210–226, Springer, Heidelberg,
Feb. 2005.

[31] N. Dedic, G. Itkis, L. Reyzin, and S. Russell, “Upper and lower bounds on black-
box steganography,” in TCC 2005 (J. Kilian, ed.), vol. 3378 of LNCS, pp. 227–244,
Springer, Heidelberg, Feb. 2005.

[32] C. Grotho�, K. Grotho�, L. Alkhutova, R. Stutsman, and M. Atallah, “Translation-
based steganography,” in International Workshop on Information Hiding, pp. 219–
233, Springer, 2005.

[33] M. Shirali-Shahreza and M. H. Shirali-Shahreza, “Text steganography in sms,”
2007 International Conference on Convergence Information Technology (ICCIT
2007), pp. 2260–2265, 2007.

[34] Z. Yu, L. Huang, Z. Chen, L. Li, X. Zhao, and Y. Zhu, “Steganalysis of synonym-
substitution based natural language watermarking,” 2009.

[35] C.-Y. Chang and S. Clark, “Linguistic steganography using automatically gener-
ated paraphrases,” in Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
HLT ’10, (Stroudsburg, PA, USA), pp. 591–599, Association for Computational
Linguistics, 2010.

[36] C.-Y. Chang and S. Clark, “Practical linguistic steganography using contex-
tual synonym substitution and a novel vertex coding method,” Computational
Linguistics, vol. 40, p. 403–448, Jun 2014.

[37] T. Fang, M. Jaggi, and K. Argyraki, “Generating steganographic text with lstms,”
Proceedings of ACL 2017, Student Research Workshop, 2017.

[38] D. Volkhonskiy, I. Nazarov, B. Borisenko, and E. Burnaev, “Steganographic
generative adversarial networks,” 2017.

[39] Z. Yang, S. Jin, Y. Huang, Y. Zhang, and H. Li, “Automatically generate stegano-
graphic text based on markov model and hu�man coding,” 2018.

[40] L. Xiang, “Reversible natural language watermarking using synonym substitu-
tion and arithmetic coding,” 2018.

[41] Z. Yang, X. Guo, Z. Chen, Y. Huang, and Y. Zhang, “Rnn-stega: Linguistic
steganography based on recurrent neural networks,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 14, pp. 1280–1295, May 2019.

[42] S.-Y. HUANG and P.-S. Huang, “A homophone-based chinese text steganography
scheme for chatting applications.,” Journal of Information Science & Engineering,
vol. 35, no. 4, 2019.

[43] F. Dai and Z. Cai, “Towards near-imperceptible steganographic text,” Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, 2019.

[44] Z. M. Ziegler, Y. Deng, and A. M. Rush, “Neural linguistic steganography,” 2019.
[45] Z. Yang, Y. Huang, and Y.-J. Zhang, “A fast and e�cient text steganalysis method,”

IEEE Signal Processing Letters, vol. 26, pp. 627–631, 2019.
[46] Z. Yang, K. Wang, J. Li, Y. Huang, and Y. Zhang, “Ts-rnn: Text steganalysis based

on recurrent neural networks,” IEEE Signal Processing Letters, p. 1–1, 2019.
[47] Z. Yang, N. Wei, J. Sheng, Y. Huang, and Y.-J. Zhang, “Ts-cnn: Text steganalysis

from semantic space based on convolutional neural network,” 2018.
[48] A. Wilson, P. Blunsom, and A. Ker, “Detection of steganographic techniques

on twitter,” Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, 2015.

[49] J. Kodovsky, J. Fridrich, and V. Holub, “Ensemble classi�ers for steganalysis of
digital media,” IEEE Transactions on Information Forensics and Security, vol. 7,
pp. 432–444, April 2012.

[50] P. Meng, L. Huang, Z. Chen, W. Yang, and D. Li, “Linguistic steganography
detection based on perplexity,” in 2008 International Conference on MultiMedia
and Information Technology, pp. 217–220, Dec 2008.

[51] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” OpenAI Blog, vol. 1, no. 8, 2019.

[52] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-
dlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot
learners,” 2020.

[53] O. Blog, “Better language models and their implications.” Available at https:
//openai.com/blog/better-language-models/, February 2019.

[54] N. J. Hopper, “Toward a theory of steganography,” tech. rep., CARNEGIE-
MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE, 2004.

https://whispersystems.org/docs/specifications/doubleratchet/
https://whispersystems.org/docs/specifications/doubleratchet/
https://scontent.whatsapp.net/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-Whitepaper.pdf
https://scontent.whatsapp.net/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-Whitepaper.pdf
https://scontent.whatsapp.net/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-Whitepaper.pdf
https://freedomhouse.org/report/freedom-net/freedom-net-2018/rise-digital-authoritarianism
https://freedomhouse.org/report/freedom-net/freedom-net-2018/rise-digital-authoritarianism
http://eprint.iacr.org/2000/028
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/

[55] A. Karpathy, “The unreasonable e�ectiveness of recurrent neural networks.”
https://karpathy.github.io/2015/05/21/rnn-e�ectiveness/, May 2015.

[56] A. van Dalen, “The algorithms behind the headlines,” Journalism Practice, vol. 6,
no. 5-6, pp. 648–658, 2012.

[57] A. Graefe, “Guide to automated journalism,” 2016.
[58] D. Rockmore, “What happens when machines learn to write poetry,” Jan 2020.
[59] A. Mayne, “Ai|writer.” https://www.aiwriter.app/.
[60] A. Kind, “Talk to transformer.” https://app.inferkit.com/demo.
[61] “Ai writer.” http://ai-writer.com/.
[62] J. Y. Koh. https://modelzoo.co/.
[63] J. Zöllner, H. Federrath, H. Klimant, A. P�tzmann, R. Piotraschke, A. Westfeld,

G. Wicke, and G. Wolf, “Modeling the security of steganographic systems,” in
International Workshop on Information Hiding, pp. 344–354, Springer, 1998.

[64] T. Mittelholzer, “An information-theoretic approach to steganography and wa-
termarking,” in International Workshop on Information Hiding, pp. 1–16, Springer,
1999.

[65] K. Solanki, K. Sullivan, U. Madhow, B. S. Manjunath, and S. Chandrasekaran,
“Provably secure steganography: Achieving zero k-l divergence using statistical
restoration,” in 2006 International Conference on Image Processing, pp. 125–128,
Oct 2006.

[66] A. Sarkar, K. Solanki, and B. S. Manjunath, “Secure steganography: Statistical
restoration in the transform domain with best integer perturbations to pixel
values,” in IEEE International Conference on Image Processing (ICIP), Sep 2007.

[67] K. Sullivan, K. Solanki, B. S. Manjunath, U. Madhow, and S. Chandrasekaran,
“Determining achievable rates for secure, zero divergence, steganography,” in
ICIP, pp. 121–124, IEEE, 2006.

[68] L. Reyzin and S. Russell, “Simple stateless steganography.” Cryptology ePrint
Archive, Report 2003/093, 2003. http://eprint.iacr.org/2003/093.

[69] T. V. Le, “E�cient provably secure public key steganography.” Cryptology ePrint
Archive, Report 2003/156, 2003. http://eprint.iacr.org/2003/156.

[70] T. V. Le and K. Kurosawa, “E�cient public key steganography secure against
adaptively chosen stegotext attacks.” Cryptology ePrint Archive, Report
2003/244, 2003. http://eprint.iacr.org/2003/244.

[71] T. Ru�ng, J. Schneider, and A. Kate, “Identity-based steganography and its
applications to censorship resistance,” in ACM CCS 2013 (A.-R. Sadeghi, V. D.
Gligor, and M. Yung, eds.), pp. 1461–1464, ACM Press, Nov. 2013.

[72] S. Berndt and M. Liskiewicz, “On the gold standard for security of universal
steganography,” in EUROCRYPT 2018, Part I (J. B. Nielsen and V. Rijmen, eds.),
vol. 10820 of LNCS, pp. 29–60, Springer, Heidelberg, Apr. / May 2018.

[73] T. Horel, S. Park, S. Richelson, and V. Vaikuntanathan, “How to subvert back-
doored encryption: Security against adversaries that decrypt all ciphertexts,” in
ITCS 2019 (A. Blum, ed.), vol. 124, pp. 42:1–42:20, LIPIcs, Jan. 2019.

[74] T. Agrikola, G. Couteau, Y. Ishai, S. Jarecki, and A. Sahai, “On pseudorandom
encodings,” in TCC 2020, Part III (R. Pass and K. Pietrzak, eds.), vol. 12552 of
LNCS, pp. 639–669, Springer, Heidelberg, Nov. 2020.

[75] A. Lysyanskaya and M. Meyerovich, “Provably secure steganography with
imperfect sampling,” in PKC 2006 (M. Yung, Y. Dodis, A. Kiayias, and T. Malkin,
eds.), vol. 3958 of LNCS, pp. 123–139, Springer, Heidelberg, Apr. 2006.

[76] D. Fi�eld, C. Lan, R. Hynes, P. Wegmann, and V. Paxson, “Blocking-resistant
communication through domain fronting,” Proceedings on Privacy Enhancing
Technologies, vol. 2015, no. 2, pp. 46–64, 2015.

[77] S. Frolov and E. Wustrow, “The use of tls in censorship circumvention.,” in NDSS,
2019.

[78] S. Frolov, F. Douglas, W. Scott, A. McDonald, B. VanderSloot, R. Hynes, A. Kruger,
M. Kallitsis, D. G. Robinson, S. Schultze, et al., “An isp-scale deployment of
tapdance,” in 7th {USENIX} Workshop on Free and Open Communications on the
Internet ({FOCI} 17), 2017.

[79] D. Luchaup, K. P. Dyer, S. Jha, T. Ristenpart, and T. Shrimpton, “Libfte: A toolkit
for constructing practical, format-abiding encryption schemes,” in 23rd USENIX
Security Symposium (USENIX Security 14), (San Diego, CA), pp. 877–891, USENIX
Association, 2014.

[80] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Protocol misidenti�ca-
tion made easy with format-transforming encryption,” in ACM CCS 2013 (A.-R.
Sadeghi, V. D. Gligor, and M. Yung, eds.), pp. 61–72, ACM Press, Nov. 2013.

[81] K. P. Dyer, S. E. Coull, and T. Shrimpton, “Marionette: A programmable network
tra�c obfuscation system,” in 24th USENIX Security Symposium (USENIX Security
15), (Washington, D.C.), pp. 367–382, USENIX Association, 2015.

[82] J. Oakley, L. Yu, X. Zhong, G. K. Venayagamoorthy, and R. Brooks, “Protocol
proxy: An fte-based covert channel,” Computers & Security, vol. 92, p. 101777,
May 2020.

[83] S. Baluja, “Hiding images in plain sight: Deep steganography,” in Neural Infor-
mation Processing Systems, 2017.

[84] D. Hu, L. Wang, W. Jiang, S. Zheng, and B. Li, “A novel image steganography
method via deep convolutional generative adversarial networks,” IEEE Access,
vol. 6, pp. 38303–38314, 2018.

[85] Harveyslash, “harveyslash/deep-steganography.”
https://github.com/harveyslash/Deep-Steganography, Apr 2018.

[86] A. Sen, S. Alfeld, X. Zhang, A. Vartanian, Y. Ma, and X. Zhu, “Training set
camou�age,” Decision and Game Theory for Security, p. 59–79, 2018.

[87] M. Chaumont, “Deep learning in steganography and steganalysis from 2015 to
2018,” 2019.

[88] P. Wu, Y. Yang, and X. Li, “Stegnet: Mega image steganography capacity with
deep convolutional network,” Future Internet, vol. 10, p. 54, Jun 2018.

[89] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, pp. 1735–80, 12 1997.

[90] M. Costa-Jussa and J. Fonollosa, “Character-based neural machine translation,”
in Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, pp. 357–361, 03 2016.

[91] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-aware neural language
models,” in Proceedings of the Thirtieth AAAI Conference on Arti�cial Intelligence,
AAAI’16, pp. 2741–2749, AAAI Press, 2016.

[92] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, u. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems, NIPS’17, (Red Hook,
NY, USA), p. 6000–6010, Curran Associates Inc., 2017.

[93] R. Aharoni, M. Koppel, and Y. Goldberg, “Automatic detection of machine
translated text and translation quality estimation,” in Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), vol. 2, pp. 289–295, 2014.

[94] A. Bakhtin, S. Gross, M. Ott, Y. Deng, M. Ranzato, and A. Szlam, “Real or fake?
learning to discriminate machine from human generated text,” 2019.

[95] S. Gehrmann, H. Strobelt, and A. M. Rush, “Gltr: Statistical detection and visual-
ization of generated text,” 2019.

[96] Y. Zhu, S. Lu, L. Zheng, J. Guo, W. Zhang, J. Wang, and Y. Yu, “Texygen: A
benchmarking platform for text generation models,” in The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval,
pp. 1097–1100, ACM, 2018.

[97] D. Dachman-Soled, G. Fuchsbauer, P. Mohassel, and A. O’Neill, “Enhanced
chosen-ciphertext security and applications,” in PKC 2014 (H. Krawczyk, ed.),
vol. 8383 of LNCS, pp. 329–344, Springer, Heidelberg, Mar. 2014.

[98] C. Peikert and B. Waters, “Lossy trapdoor functions and their applications,” in
40th ACM STOC (R. E. Ladner and C. Dwork, eds.), pp. 187–196, ACM Press,
May 2008.

[99] M. Blum and S. Micali, “How to generate cryptographically strong sequences of
pseudo random bits,” in 23rd FOCS, pp. 112–117, IEEE Computer Society Press,
Nov. 1982.

[100] S. Ruhault, “SoK: Security models for pseudo-random number generators,” IACR
Trans. Symm. Cryptol., vol. 2017, no. 1, pp. 506–544, 2017.

[101] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, and A. Lerer, “Automatic di�erentiation in pytorch,” in NIPS-W,
2017.

[102] E. Barker and J. Kelsey, “Nist special publication 800-90a revision 1 recommenda-
tion for random number generation using deterministic random bit generators,”
2015.

[103] S. Robertson, “spro/char-rnn.pytorch.” https://github.com/spro/char-
rnn.pytorch, Dec 2017.

[104] M. Hutter, “The human knowledge compression contest.”
http://prize.hutter1.net/, 2006.

[105] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast internet-wide
scanning and its security applications,” in Presented as part of the 22nd USENIX
Security Symposium USENIX Security 13), pp. 605–620, 2013.

[106] S. Cutler, “Project 25499 ipv4 http scans.” https://scans.io/study/mi.
[107] HuggingFace, “huggingface/swift-coreml-transformers.”

https://github.com/huggingface/swift-coreml-transformers, Oct 2019.
[108] T. Simonite, “Apple’s latest iphones are packed with ai smarts.” https://www.

wired.com/story/apples-latest-iphones-packed-with-ai-smarts/.
[109] S. J. Oh, B. Schiele, and M. Fritz, “Towards reverse-engineering black-box neu-

ral networks,” in Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning, pp. 121–144, Springer, 2019.

[110] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes, “Ml-leaks:
Model and data independent membership inference attacks and defenses on
machine learning models,” arXiv preprint arXiv:1806.01246, 2018.

[111] M. Juuti, S. Szyller, S. Marchal, and N. Asokan, “Prada: protecting against dnn
model stealing attacks,” in 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), pp. 512–527, IEEE, 2019.

A EFFICIENCY OF METEOR
We now show that the asymptotic expected throughput of Me-
teor is proportional to the entropy in the communication chan-
nel. Recall that the entropy in a distribution P is computed as
�
Õ
82 |P | ?8 log2 (?8), where ?8 is the probability of the 8th possible

https://www.aiwriter.app/
https://app.inferkit.com/demo
http://ai-writer.com/
http://eprint.iacr.org/2003/093
http://eprint.iacr.org/2003/156
http://eprint.iacr.org/2003/244
https://www.wired.com/story/apples-latest-iphones-packed-with-ai-smarts/
https://www.wired.com/story/apples-latest-iphones-packed-with-ai-smarts/

outcome of P . Similarly, the expected throughput of Meteor can
be computed as

Õ
82 |P | ?8Exp(?8), where Exp(·) is the expected

number of shared pre�x bits for some continuous interval of size
?8 . Thus, the remaining task is to compute a concrete bound on
Exp(·).

We will make the simplifying assumption that the start of an
interval ?8 is placed randomly between [0, 2V+1

) . Note that interval
8 will never start after 2V+1

� ?8 in practice, so we the number of
pre�x bits in this case to be 0, so this simpli�cation will lead to
an expected throughput strictly less than the true value. Addition-
ally, the starting locations for each interval are not independent in
practice, as they each depend on ? 9<8 . However, this independence
assumption also leads to equal or lower expected throughput, as
the starting point for larger intervals will actually be more biased
towards the middle of the distribution, where Exp(·) will be lower,
and smaller distributions will be biased to start near the edges of
the distribution, where Exp(·) will be higher.

By way of example, consider an interval 8 such that ?8 = 1
4 � n ,

for some small n (see Figure 7). If 8 starts between [0, n), then it is
contained completely before the pre�x 01 begins, and thus would
transmit 2 bits. The following ?8 starting points all transmit only 1
bit, as the only shared pre�x for the interval would be 0. If 8 starts
between [

1
4 2V+1, (1

4 + n)2V+1
), the entire interval shares the pre�x

01, so 2 bits can be transmitted. In [(
1
4 + n)2V+1, 1

2 2V+1
), there is

no shared pre�x, as some of the samples that would land in that
interval start with a 0 and others start with 1. The analysis continues
in this way for the remainder of the starting points.

More generally, the expected throughput of an interval with
size ? is the average of these di�erent sets of starting points with
di�erent length shared pre�xed, weighted by size. More explicitly,
let 6(?) =

⌅
� log2 (?)

⇧
, then

Exp(?) �

(
0 , ? > 1/2
6(?) (2�6 (?) � ?)26 (?) + ?

Õ6 (?)�1
9=1 (929) , ? 1/2

The �rst part of the expression corresponds to the starting points
where the interval has the most shared bits, e.g. the points in Figure 7
where the throughput is 2. There are 26 (?) of these sets, each of
which has size (2�6 (?)�?), the di�erence between ? and the nearest
power of two less than 2. The sum corresponds to the when the
interval transmits fewer bits, e.g. the points in Figure 7 where the
throughput is 1 or 0. Each of these terms counts the ?29 starting
points where the number of bits transmitted is 9 .

Note that Exp(?) � 1
2 (� log2 (?) � 1) for small enough ? . To see

this, note that 6(?) � � log2 (?) � 1, because of the rounding. Then,
just consider the �rst term

6(?) (2�6 (?) � ?)26 (?) � (� log2 (?) � 1) (1 � ?2� log2 (?)�1
)

=
1
2
(� log2 (?) � 1) .

While this bound is not tight, it illustrates that Exp(?) asymptot-
ically acts like log2 (?), meaning

Õ
82 |P | ?8Exp(?8), grows propor-

tionally to the entropy in P, �
Õ
82 |P | ?8 log2 (?8). Thus, the ex-

pected throughput of Meteor is asymptotically optimal.

0

1

2

n 1
4

1
4 + n

1
2

1
2 + n

3
4

3
4 + n

1

Starting Location of Interval

Bi
ts

Figure 7: Bits of throughput by starting location for an in-
terval 8 with size ?8 = 1

4 � n, for some small n. The expected
throughput can be computed as the average of this function,
i.e. Exp(?8) � (2) (1

4 � n) (0) + (2) (1
4 � n) (1) + (22

) (n) (2) = 1
2 � 6n

B HEURISTIC OPTIMIZATIONS
In evaluating Meteor, we also implement two heuristic optimiza-
tions that could lead to better performance without compromising
security. Note that while they increases the expected throughput
of scheme, it is not guaranteed to do so. Making any change to the
output selected in a given sampling event might unintentionally
push the model down a lower entropy branch of the covertext space,
yielding more sampling iterations overall. The �rst optimization
is performing a deterministic reordering operation of the model
distribution, reduces the number of calls to the generative model
by 20%-25%, and in some cases results in more e�cient encoding
and decoding times. The second optimization is an adaptation from
the NLP literature that uses the generative model’s internal word
representation to compress English language messages.

Before proceeding to the optimizations themselves, recall the
intuition provided for Meteor in Section 5. In each iteration of
the encoding algorithm, the sender extracts a probability distribu-
tion P from the generative model. P is subdivided into a series of
continuous intervals A0, A1, . . . A< , the size of which determines the
probability that the model would select the corresponding token is
the next output. Meteor then generates a random sampling value
A =<0B: �< and determines the interval A8 into which A falls. The
number of bits encoded is computed as LenPrefix(A8).
Optimization 1: Reordering the Distribution. We note that
while we cannot manipulate |A8 | without compromising the se-
curity of scheme, we are able to impact LenPrefix(A8) by permuting
the order of A0, A1, . . . , A< . It is clear there exists some such permu-
tation that maximizes the expected throughput of Meteor, although
�nding this permutation proves to be di�cult.

The distribution P is generally output by the model in some
sorted or lexicographic order. This might yield to some orderings
of A8 that are incredibly unfavorable to LenPrefix(·). Consider an
illustrative example in Figure 8a. If an interval A8 contains values on
either side of the middle of the distribution, then LenPrefix(A8) = 0.
When a large interval does so, as in cases (1) and (3), this severely
decreases the expected number of bits that the distribution can
encode. While this example is clearly contrived, it illustrates the
impact correctly ordering P can have on the expected throughput
– in this example an increase of over 50%. Importantly, we can use
any reorganization procedure on the distribution provided (1) the
same resulting permutation can be computed by both the sender
and the receiver and (2) the size of A8 remains the same for all A8 .

r0 r1 r2

r0r1 r2

r0r1 r2

 1) E(d) = .03*5 + .49*0 + .48*1 = .63

 2) E(d)=.49*1 + .03*0 + .48*1 = .97

 3) E(d) = .49*1 + .48*0 + .03*5 = .64

(a) The impact of reorganizing a distribution.

r2

r1

r1 r1 r0

Bucket 0 Bucket 1 Bucket 2 Bucket 3

(1)

(2) (3)

Bucket 0 Bucket 1 Bucket 2 Bucket 3

(0)

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Bucket 0 Bucket 1 Bucket 2 Bucket 3

r2

(b) An overview of our reorganization algorithm.

Figure 8: (a) A0 has 3% of the total probability density, while A1 and A2 have 48% and 49% respectively. Because 2�6 < .03 < 2�5, A0 can encode
5 bits of information when located at the beginning or end of the distribution. In orderings (1) and (2), one of the larger intervals crosses
the 50% line, meaning LenPrefix(·) = 0. When the smallest interval is placed in the middle, the total expected throughput of the distribution
rises. (b) To reorder this distribution we create 22 = 4 buckets, because the entropy is 1.16. In (1), we place the largest interval A1 into bucket 0,
over�owing its value through most of bucket 1. Note that A1 could have been placed in bucket 2; in general, we break ties by taking the earlier
bucket. In (2), A2 can be placed either in bucket 1, over�owing into the following buckets, or placed in bucket 2, over�owing into bucket 3. To
maximize LenPrefix(A2) , we place it in bucket 2. Finally, in (3), we note that A0 will not �t in bucket 3, so it must be placed in bucket 1, pushing
A2 to make space.

Finding the optimal permutation of P proves to be a di�cult
task. Intuitively, each interval A8 , must be placed as a continuous
block somewhere between 0 and 1 such that it does not overlap with
other intervals. We take inspiration from approximation algorithms
and design a greedy algorithm with pretty good performance, and
we leave formal analysis and bounds proving of this algorithm
for future work. A simple algorithm would be to �nd a “starting
point” to place each interval, starting with the largest, that maxi-
mizes LenPrefix(A8). However, there are 2V possible starting points,
meaning a linear search will be prohibitively expensive. Instead
we generate 2 d� (P) e buckets with capacity

Õ
8 (A8)

2d� (P)e
, where � (P) is

the entropy in the distribution. These buckets represent potential
“starting points” that each A8 can be placed. Note that the entropy
represents an upper bound on the possible value of the expected
throuhput ⇢ (P) and if each interval A8 could perfectly �t into one
of these bins, ⇢ (P) = � (P).

Starting with the largest A8 , we �nd the bin that will maximize
LenPrefix(A8) when A8 is appended to that bucket. As buckets be-
come full, they are no longer options for placement. Note that A8
may exceed the remaining capacity of a bucket, or even the total
capacity of a bucket. When this is the case, we “over�ow” the re-
mainder into the following buckets. Occasionally, this over�owing
remainder may cause a chain reaction, requiring other, already
placed intervals be “pushed” to make space. We give a simple ex-
ample of our reorganization algorithm in Figure 8b, using the same
distribution given in Figure 8a. Step (3) gives an example of over-
�ow that causes one of these chain reactions. Once each interval
has been placed into a bin, the �nal ordering can be recovered by
appending the contents of the bins.

The runtime of this algorithm is $ (2 d� (P) e<), where< is the
number of intervals; in our experiments, d� (P)e is typically less
than 7, so this is close to $ (<), which is unsurprising given its
similarities to bin-sorting. When = is very large, however, this
algorithm is prohibitively expensive. In those cases, we use this
algorithm to place the “big” intervals, and then simply place the
smaller intervals into the �rst bucket with space. As we discuss in
§6, reordering the distributions increases capacity by 20%-25%.

C MODEL OUTPUTS
This appendix contains stegotext outputs as generated by Meteor
using several di�erent model types. The plaintext associated with
all of these outputs is the �rst 160 bytes of Lorem Ipsum. Figure
10 shows a truncated output for a stegotext generated using the
Wikipedia model, which seems to have generated some kind of
Wiki-markup contents page. Figures 11 and 12 are GPT-2 outputs
for di�erent contexts provided as input. Each output reads like a
news article or book chapter. Representative output for the HTML
headers model has been omitted due to space constraints. Finally,
Figure 9 is a screenshot of Meteor running on the iPhone Simula-
tor, generating stream-of-consciousness news text. Note that the
context is shorter on the iPhone, as it can hold less state.

Figure 9: iPhone X screenshot of Meteor encoding of the �rst 160 bytes of Lorem Ipsum as generated by the GPT-2 model.
Generated text is highlighted, and context is unhighlighted.

Haired the latter expand of the legal instance of the Imperial State of the American foal bridge, it is
suspective that he was also notable to ensure that they produced a consolidate [[electricity]], the actual
psychological cabinet [[Greece]] was the same time. It was born in many in the second [[tuak]] and [[timber]]
at the idea of [[computer account|computer science]], which provides sales might therefore be in popular
writings such as the European Investigation.

õ!

õ!

õ!

õ!

==Video games==
* [[Brown Town]]
* [[Sagan in the United States|Commonwealth of Western Technology]]
* [[Template International Society of Europe]]
* [[Commonwealth of Russia]]
* [[Commerce coverage in Sweden]]
* [[List of Constitution by Westman of the United Kingdom|British Politics]]
* [[List of California Court in 1981]]
* [[International Party of Diabetos Integrated Policy]]
* [[United Kingdom]]

===Overseas Roman Empire===
* [[Communist Council of Ireland]]
* [[Confucian States of the South Edition]]
* [[Conservative Party of the United Kingdom]]

[[Category:American states]]
[[Category:Conferences of India]]

Figure 10: Snippet of Meteor encoding of the �rst 160 bytes of Lorem Ipsum as generated by theWikipedia model. The output
was truncated to �t.

Context:
The Alvarez hypothesis posits that the mass extinction of the dinosaurs and many other living things during the Cretaceous-Paleogene extinction event
was caused by the impact of a large asteroid on the Earth. Prior to 2013, it was commonly cited as having happened about 65 million years ago, but Renne
and colleagues (2013) gave an updated value of 66 million years. Evidence indicates that the asteroid fell in the Yucatan Peninsula, at Chicxulub, Mexico.
The hypothesis is named after the father-and-son team of scientists Luis and Walter Alvarez, who �rst suggested it in 1980. Shortly afterwards, and
independently, the same was suggested by Dutch paleontologist Jan Smit.

Stegotext:
The picture in The Pale I HCR scientists’ discussion now spans three dimensions. The �rst importance of the Yucatan Peninsula is demonstrated with the
following conclusion: the Pliocene Earth has lost about seven times as much vegetation as the Jurassic in regular parts of the globe, from northern India to
Siberia. Even since 1976, the continent has received or is already experiencing the worst mass extinction in recorded history since there were a million
years last left from the extinction of Antarctic ice and the rapid spread of hydrocarbon-rich water as the Earth entered the Cretaceous Period. In turn, the
world’s oceans have been breathtakingly transformed and as a result the surrounding environments are especially vulnerable. The reason is obvious: there
was no geological record of the presence of the Yucatan Peninsula in the Late Miocene epoch, which is the line that runs from the southern edge of South
America to Siberia. The commander-in-chief of the Yucatan Peninsula, Frederick Nystrom, has determined that the area is to stay as barren as possible. As
a result, individuals living on lake beds and on coastal areas have witnessed the loss of about 90 percent of their habitat. The Yucatan Peninsula consists of
four zones, with two di�erent habitats separated, each of which has experienced inseam damage. In one zone, along the northern shore of Lake Shemal, the
retreating Tarahumara Ocean has been melted into a deep, sea�oor called Nova Ravine, which south-east of the Yucatan Peninsula �ows into Lake Isthmus,
where there is an abundance of turtle life. A second beach, which lies at the far end of the peninsula, has been spewed down by a sea wall supporting
Madagascar’s Great Ocean Earthquake, 9,000 feet in magnitude and caused large numbers of deaths. The third zone, along the coast of Cancun and in
Asuncion, is less severely a�ected. An estimated 16 percent of the continent is protected from the destruction of oceanic winds and �oods. All three zones
are in a state of catastrophic destruction. According to the de�nition provided by the National Commission on the extinction of the dinosaurs (Infection
and Immunization in the Ind

Figure 11: The “Dinosaur” context and associatedMeteor encoding of the �rst 160 bytes of Lorem Ipsum as generated by GPT-2.
This is the context used in Figure 3.

Context:
Washington received his initial military training and command with the Virginia Regiment during the French and Indian War. He was later elected to
the Virginia House of Burgesses and was named a delegate to the Continental Congress, where he was appointed Commanding General of the nation’s
Continental Army. Washington led American forces, allied with France, in the defeat of the British at Yorktown. Once victory for the United States was in
hand in 1783, Washington resigned his commission.

Stegotext:
Washington was martyred in the battle of Cullman in 1788. Although down 19 men, yet his mission accomplished. He ended his life in 1896. When he died
of disease, three of the men responsible said that Washington had been moved and was seen at the funeral placing him in his father’s arms. Another said
that Washington treated his wounds with "a study of a personal sense of injustice." (A 16th century German historian calls Washington a liar because of
this website.) He was also a friend of Dr. Henry H. Jackson, who was notable as George Washington’s physician and a collaborator, and recognizes him
by name in the any books about him. The last surviving manuscript is from 1888 and contains a frank and truthful account of the Quakers’ plight. One
story states that while �ghting in Whitesburg, Washington succumbed to pneumonia. He was 38 years old and according to a manuscript he got out the
following year reports he grew old and fell in love. He also mentions a meeting with a woman who broke into his home and �rst went with him into a bath
and gave him food and sleep. Three days later the woman left the room expecting him to eat her lunch and on that day he left home at 9:30 am in despair.
He had not been to his bedside. On seeing this, he said a voice in him called out, "Your name is Jack. What is the girl?" Hamilton said the superior told him,
"She was a layover in a bed and seven[Pg 209] feet below the bed where the general slept in very feminine attire. Nobody had time to look into her face.
What was she to tell you about the general?"
A
Washington’s O�cial Address to Congress with Americans May 17th, 1781
"I am the one to announce completely that I am a true Christian and an eloquent philosopher. I am not constrained

Figure 12: The “Washington” context and associated Meteor encoding of the �rst 160 bytes of Lorem Ipsum as generated by
GPT-2. This is the encoding used throughout the benchmarks in Section 6.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Definitions
	3.1 Symmetric Steganography
	3.2 Ranged Randomness Recoverable Sampling Scheme

	4 Adapting Classical Steganographic Schemes
	5 Meteor: A More Efficient Symmetric-Key Steganographic Scheme
	5.1 Intuition
	5.2 Meteor

	6 Evaluation of Meteor
	7 Comparison to NLP-based Steganography
	8 Conclusion
	References
	A Efficiency of Meteor
	B Heuristic Optimizations
	C Model Outputs

