
NP-Completeness:
The Equivalence of the

Decision and Optimization
Independent Set Problems



Coloring Problem: Optimization Version

Let G = (V , E ) be an undirected graph. An independent
set of G is a subset of the vertices such that so that no
two vertices in the subset are neighbors (in G).

Example



Coloring Problem: Optimization Version

Let G = (V , E ) be an undirected graph. An independent
set of G is a subset of the vertices such that so that no
two vertices in the subset are neighbors (in G).

Example



Coloring Problem: Optimization Version

Independent set problem: Given an undirected graph
G = (V , E ), find a maximum independent set.

Is the independent set problem NP-complete?

Technically it cannot be NP-complete since it is not a
decision problem.

What do we need to do?

Find an analogous decision problem, and prove that the
analogous decision problem is NP-complete.



Coloring Problem: Optimization Version

Independent set problem: Given an undirected graph
G = (V , E ), find a maximum independent set.

Is the independent set problem NP-complete?

Technically it cannot be NP-complete since it is not a
decision problem.

What do we need to do?

Find an analogous decision problem, and prove that the
analogous decision problem is NP-complete.



Coloring Problem: Optimization Version

Independent set problem: Given an undirected graph
G = (V , E ), find a maximum independent set.

Is the independent set problem NP-complete?

Technically it cannot be NP-complete since it is not a
decision problem.

What do we need to do?

Find an analogous decision problem, and prove that the
analogous decision problem is NP-complete.



Coloring Problem: Optimization Version

Independent set problem: Given an undirected graph
G = (V , E ), find a maximum independent set.

Is the independent set problem NP-complete?

Technically it cannot be NP-complete since it is not a
decision problem.

What do we need to do?

Find an analogous decision problem, and prove that the
analogous decision problem is NP-complete.



Coloring Problem: Optimization Version

Independent set problem: Given an undirected graph
G = (V , E ), find a maximum independent set.

Is the independent set problem NP-complete?

Technically it cannot be NP-complete since it is not a
decision problem.

What do we need to do?

Find an analogous decision problem, and prove that the
analogous decision problem is NP-complete.



Coloring Problem: Optimization Version

Independent set problem: Given an undirected graph
G = (V , E ), find a maximum independent set.

Is the independent set problem NP-complete?

Technically it cannot be NP-complete since it is not a
decision problem.

What do we need to do?

Find an analogous decision problem, and prove that the
analogous decision problem is NP-complete.



Decision Version

Decision version of the independent set problem:
Given an undirected graph G = (V , E ) and an integer k ,
does G have an independent of size k (or larger)?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Decision version of the independent set problem:

Given an undirected graph G = (V , E ) and an integer k ,
does G have an independent of size k (or larger)?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Decision version of the independent set problem:
Given an undirected graph G = (V , E ) and an integer k ,
does G have an independent of size k (or larger)?

Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Decision version of the independent set problem:
Given an undirected graph G = (V , E ) and an integer k ,
does G have an independent of size k (or larger)?
Is the decision version analogous?

Two requirements:
The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Decision version of the independent set problem:
Given an undirected graph G = (V , E ) and an integer k ,
does G have an independent of size k (or larger)?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Decision version of the independent set problem:
Given an undirected graph G = (V , E ) and an integer k ,
does G have an independent of size k (or larger)?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem.

Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Decision version of the independent set problem:
Given an undirected graph G = (V , E ) and an integer k ,
does G have an independent of size k (or larger)?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.

The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Decision version of the independent set problem:
Given an undirected graph G = (V , E ) and an integer k ,
does G have an independent of size k (or larger)?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time.

Will show.



Decision Version

Decision version of the independent set problem:
Given an undirected graph G = (V , E ) and an integer k ,
does G have an independent of size k (or larger)?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Is the decison version NP-complete? Yes.

How do we know?

Karp proved it in 1972.



Decision Version

Is the decison version NP-complete?

Yes.

How do we know?

Karp proved it in 1972.



Decision Version

Is the decison version NP-complete? Yes.

How do we know?

Karp proved it in 1972.



Decision Version

Is the decison version NP-complete? Yes.

How do we know?

Karp proved it in 1972.



Decision Version

Is the decison version NP-complete? Yes.

How do we know?

Karp proved it in 1972.



Proof of equivalence

Theorem
The optimization version of independent set is in P if and
only if the decision version of independent set is in P.

Proof.
( =⇒ ) Assume that the optimization version of
independent set is in P with time O(nr ). Given decision
problem for undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .
(2) Count the number of vertices.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence
Theorem
The optimization version of independent set is in P if and
only if the decision version of independent set is in P.

Proof.
( =⇒ ) Assume that the optimization version of
independent set is in P with time O(nr ). Given decision
problem for undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .
(2) Count the number of vertices.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence
Theorem
The optimization version of independent set is in P if and
only if the decision version of independent set is in P.

Proof.
( =⇒ ) Assume that the optimization version of
independent set is in P with time O(nr ).

Given decision
problem for undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .
(2) Count the number of vertices.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence
Theorem
The optimization version of independent set is in P if and
only if the decision version of independent set is in P.

Proof.
( =⇒ ) Assume that the optimization version of
independent set is in P with time O(nr ). Given decision
problem for undirected graph G = (V , E ) with integer k :

(1) Run the the optimization version on G .
(2) Count the number of vertices.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence
Theorem
The optimization version of independent set is in P if and
only if the decision version of independent set is in P.

Proof.
( =⇒ ) Assume that the optimization version of
independent set is in P with time O(nr ). Given decision
problem for undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .

(2) Count the number of vertices.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence
Theorem
The optimization version of independent set is in P if and
only if the decision version of independent set is in P.

Proof.
( =⇒ ) Assume that the optimization version of
independent set is in P with time O(nr ). Given decision
problem for undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .
(2) Count the number of vertices.

(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence
Theorem
The optimization version of independent set is in P if and
only if the decision version of independent set is in P.

Proof.
( =⇒ ) Assume that the optimization version of
independent set is in P with time O(nr ). Given decision
problem for undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .
(2) Count the number of vertices.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence
Theorem
The optimization version of independent set is in P if and
only if the decision version of independent set is in P.

Proof.
( =⇒ ) Assume that the optimization version of
independent set is in P with time O(nr ). Given decision
problem for undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .
(2) Count the number of vertices.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence

Proof.
(⇐= ) Assume that the decision version of independent
set is in P with time O(ns), using method

IS Decision(G,k)

Given optimization problem for undirected graph
G = (V , E ):

Some magic.



Proof of equivalence
Proof.
(⇐= ) Assume that the decision version of independent
set is in P with time O(ns), using method

IS Decision(G,k)

Given optimization problem for undirected graph
G = (V , E ):

Some magic.



Proof of equivalence
Proof.
(⇐= ) Assume that the decision version of independent
set is in P with time O(ns), using method

IS Decision(G,k)

Given optimization problem for undirected graph
G = (V , E ):

Some magic.



Proof of equivalence
Proof.
(⇐= ) Assume that the decision version of independent
set is in P with time O(ns), using method

IS Decision(G,k)

Given optimization problem for undirected graph
G = (V , E ):

Some magic.



Algorithm

/* Find optimal number of vertices */
k ← n
while not IS Decision(G,k) do

k ← k-1
end while



Algorithm

/* Find optimal number of vertices */
k ← n
while not IS Decision(G,k) do

k ← k-1
end while



Algorithm continued

/* Find the vertices */
Independent Set ← ∅
for i = 1 to n do

G’ ← G
delete vertex i and its neighbors from G’
if IS Decision(G’,k-1) then

Independent Set ← Independent Set ∪ {i}
k ← k-1
G ← G’

end if
end for



Algorithm continued

/* Find the vertices */
Independent Set ← ∅
for i = 1 to n do

G’ ← G
delete vertex i and its neighbors from G’
if IS Decision(G’,k-1) then

Independent Set ← Independent Set ∪ {i}
k ← k-1
G ← G’

end if
end for



Analysis

T (n) = O(nns)
= O(ns+1)



Analysis

T (n) = O(nns)

= O(ns+1)



Analysis

T (n) = O(nns)
= O(ns+1)



NP-Completeness:
The Equivalence of the

Decision and Optimization
Coloring Problems



Coloring Problem: Optimization Version
Coloring problem: Given an undirected graph
G = (V , E ), color the vertices of G with as few colors as
possible so that no two neighboring vertices have the
same color.

Is the coloring problem NP-complete?

Technically it cannot be NP-complete since it is not a
decision problem.

What do we need to do?

Find an analogous decision problem, and prove that the
analogous decision problem is NP-complete.



Coloring Problem: Optimization Version
Coloring problem: Given an undirected graph
G = (V , E ), color the vertices of G with as few colors as
possible so that no two neighboring vertices have the
same color.

Is the coloring problem NP-complete?

Technically it cannot be NP-complete since it is not a
decision problem.

What do we need to do?

Find an analogous decision problem, and prove that the
analogous decision problem is NP-complete.



Coloring Problem: Optimization Version
Coloring problem: Given an undirected graph
G = (V , E ), color the vertices of G with as few colors as
possible so that no two neighboring vertices have the
same color.

Is the coloring problem NP-complete?

Technically it cannot be NP-complete since it is not a
decision problem.

What do we need to do?

Find an analogous decision problem, and prove that the
analogous decision problem is NP-complete.



Coloring Problem: Optimization Version
Coloring problem: Given an undirected graph
G = (V , E ), color the vertices of G with as few colors as
possible so that no two neighboring vertices have the
same color.

Is the coloring problem NP-complete?

Technically it cannot be NP-complete since it is not a
decision problem.

What do we need to do?

Find an analogous decision problem, and prove that the
analogous decision problem is NP-complete.



Coloring Problem: Optimization Version
Coloring problem: Given an undirected graph
G = (V , E ), color the vertices of G with as few colors as
possible so that no two neighboring vertices have the
same color.

Is the coloring problem NP-complete?

Technically it cannot be NP-complete since it is not a
decision problem.

What do we need to do?

Find an analogous decision problem, and prove that the
analogous decision problem is NP-complete.



Decision Version

Decision version of coloring problem:
Given an undirected graph G = (V , E ) and an integer k ,
can the vertices of G be colored with (at most) k colors
so that no two neighboring vertices have the same color?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Decision version of coloring problem:
Given an undirected graph G = (V , E ) and an integer k ,
can the vertices of G be colored with (at most) k colors
so that no two neighboring vertices have the same color?

Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Decision version of coloring problem:
Given an undirected graph G = (V , E ) and an integer k ,
can the vertices of G be colored with (at most) k colors
so that no two neighboring vertices have the same color?
Is the decision version analogous?

Two requirements:
The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Decision version of coloring problem:
Given an undirected graph G = (V , E ) and an integer k ,
can the vertices of G be colored with (at most) k colors
so that no two neighboring vertices have the same color?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Decision version of coloring problem:
Given an undirected graph G = (V , E ) and an integer k ,
can the vertices of G be colored with (at most) k colors
so that no two neighboring vertices have the same color?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem.

Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Decision version of coloring problem:
Given an undirected graph G = (V , E ) and an integer k ,
can the vertices of G be colored with (at most) k colors
so that no two neighboring vertices have the same color?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.

The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Decision version of coloring problem:
Given an undirected graph G = (V , E ) and an integer k ,
can the vertices of G be colored with (at most) k colors
so that no two neighboring vertices have the same color?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time.

Will show.



Decision Version

Decision version of coloring problem:
Given an undirected graph G = (V , E ) and an integer k ,
can the vertices of G be colored with (at most) k colors
so that no two neighboring vertices have the same color?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.



Decision Version

Is the decison version NP-complete? Yes.

How do we know?

Karp proved it in 1972.



Decision Version

Is the decison version NP-complete?

Yes.

How do we know?

Karp proved it in 1972.



Decision Version

Is the decison version NP-complete? Yes.

How do we know?

Karp proved it in 1972.



Decision Version

Is the decison version NP-complete? Yes.

How do we know?

Karp proved it in 1972.



Decision Version

Is the decison version NP-complete? Yes.

How do we know?

Karp proved it in 1972.



Proof of equivalence

Theorem
The optimization version of coloring is in P if and only if
the decision version of coloring is in P.

Proof.
( =⇒ ) Assume that the optimization version of coloring
is in P with time O(nr ). Given decision problem for
undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .
(2) Count the number of colors.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence
Theorem
The optimization version of coloring is in P if and only if
the decision version of coloring is in P.

Proof.
( =⇒ ) Assume that the optimization version of coloring
is in P with time O(nr ). Given decision problem for
undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .
(2) Count the number of colors.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence
Theorem
The optimization version of coloring is in P if and only if
the decision version of coloring is in P.

Proof.
( =⇒ ) Assume that the optimization version of coloring
is in P with time O(nr ).

Given decision problem for
undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .
(2) Count the number of colors.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence
Theorem
The optimization version of coloring is in P if and only if
the decision version of coloring is in P.

Proof.
( =⇒ ) Assume that the optimization version of coloring
is in P with time O(nr ). Given decision problem for
undirected graph G = (V , E ) with integer k :

(1) Run the the optimization version on G .
(2) Count the number of colors.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence
Theorem
The optimization version of coloring is in P if and only if
the decision version of coloring is in P.

Proof.
( =⇒ ) Assume that the optimization version of coloring
is in P with time O(nr ). Given decision problem for
undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .

(2) Count the number of colors.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence
Theorem
The optimization version of coloring is in P if and only if
the decision version of coloring is in P.

Proof.
( =⇒ ) Assume that the optimization version of coloring
is in P with time O(nr ). Given decision problem for
undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .
(2) Count the number of colors.

(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence
Theorem
The optimization version of coloring is in P if and only if
the decision version of coloring is in P.

Proof.
( =⇒ ) Assume that the optimization version of coloring
is in P with time O(nr ). Given decision problem for
undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .
(2) Count the number of colors.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



Proof of equivalence
Theorem
The optimization version of coloring is in P if and only if
the decision version of coloring is in P.

Proof.
( =⇒ ) Assume that the optimization version of coloring
is in P with time O(nr ). Given decision problem for
undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .
(2) Count the number of colors.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).



The other way around.



Idea for algorithm

Assume that given G = (V , E ),
partial colorable(G,k,p) decides if the partial
coloring p of G can be extended to a k-coloring of G in
time O(ns).



Idea for algorithm

/* Find optimal number of colors */
p ← empty coloring
k ← 1
while not partial colorable(G,k,p) do

k ← k+1
end while
/* Color the vertices */
for i = 1 to n do

j ← 0
repeat

j ← j+1
color vertex i with color j in p

until partial colorable(G,k,p)
end for



Idea for algorithm
/* Find optimal number of colors */
p ← empty coloring
k ← 1
while not partial colorable(G,k,p) do

k ← k+1
end while

/* Color the vertices */
for i = 1 to n do

j ← 0
repeat

j ← j+1
color vertex i with color j in p

until partial colorable(G,k,p)
end for



Idea for algorithm
/* Find optimal number of colors */
p ← empty coloring
k ← 1
while not partial colorable(G,k,p) do

k ← k+1
end while
/* Color the vertices */
for i = 1 to n do

j ← 0
repeat

j ← j+1
color vertex i with color j in p

until partial colorable(G,k,p)
end for



Idea for algorithm
/* Find optimal number of colors */
p ← empty coloring
k ← 1
while not partial colorable(G,k,p) do

k ← k+1
end while
/* Color the vertices */
for i = 1 to n do

j ← 0
repeat

j ← j+1
color vertex i with color j in p

until partial colorable(G,k,p)
end for



Proof of equivalence

partial colorable is not the decision version!



Proof of equivalence

partial colorable is not the decision version!



Proof of equivalence

Proof.
(⇐= ) Assume that the decision version of coloring is in
P with time O(ns), using method

colorable(G,k)

Given optimization problem for undirected graph
G = (V , E ):

Some magic.



Proof of equivalence

Proof.
(⇐= ) Assume that the decision version of coloring is in
P with time O(ns), using method

colorable(G,k)

Given optimization problem for undirected graph
G = (V , E ):

Some magic.



Proof of equivalence

Proof.
(⇐= ) Assume that the decision version of coloring is in
P with time O(ns), using method

colorable(G,k)

Given optimization problem for undirected graph
G = (V , E ):

Some magic.



Proof of equivalence

Proof.
(⇐= ) Assume that the decision version of coloring is in
P with time O(ns), using method

colorable(G,k)

Given optimization problem for undirected graph
G = (V , E ):

Some magic.



Proof of equivalence

Donald Rumsfeld (Secretary of Defense) said:
... you go to war with the army you have, not the army you
might want or wish to have ...

With apologies to Rumsfeld:
You program with the library routine you have, not the library
routine you wish you had.

Another great Rumsfeld quote:
There are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we
know there are some things we do not know. But there are
also unknown unknowns ...



Proof of equivalence

Donald Rumsfeld (Secretary of Defense) said:
... you go to war with the army you have, not the army you
might want or wish to have ...

With apologies to Rumsfeld:
You program with the library routine you have, not the library
routine you wish you had.

Another great Rumsfeld quote:
There are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we
know there are some things we do not know. But there are
also unknown unknowns ...



Proof of equivalence

Donald Rumsfeld (Secretary of Defense) said:
... you go to war with the army you have, not the army you
might want or wish to have ...

With apologies to Rumsfeld:
You program with the library routine you have, not the library
routine you wish you had.

Another great Rumsfeld quote:
There are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we
know there are some things we do not know. But there are
also unknown unknowns ...



Proof of equivalence

Donald Rumsfeld (Secretary of Defense) said:
... you go to war with the army you have, not the army you
might want or wish to have ...

With apologies to Rumsfeld:
You program with the library routine you have, not the library
routine you wish you had.

Another great Rumsfeld quote:
There are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we
know there are some things we do not know. But there are
also unknown unknowns ...



Proof of equivalence

Find optimal number of colors, k

Create a k-clique (complete graph of size k)

Example: k = 5



Proof of equivalence

Find optimal number of colors, k

Create a k-clique (complete graph of size k)

Example: k = 5



Proof of equivalence

Find optimal number of colors, k

Create a k-clique (complete graph of size k)

Example: k = 5



Proof of equivalence

Find optimal number of colors, k

Create a k-clique (complete graph of size k)

Example: k = 5



Proof of equivalence

Find optimal number of colors, k

Create a k-clique (complete graph of size k)

Example: k = 5



Proof of equivalence

Find optimal number of colors, k

Create a k-clique (complete graph of size k)

Example: k = 5



Proof of equivalence, k = 5



Proof of equivalence, k = 5



Proof of equivalence, k = 5



Proof of equivalence, k = 5



Proof of equivalence, k = 5



Proof of equivalence, k = 5



Proof of equivalence, k = 5



Proof of equivalence, k = 5



Proof of equivalence, k = 5



Proof of equivalence, k = 5



Algorithm

/* Find optimal number of colors */
k ← 1
while not colorable(G,k) do

k ← k+1
end while

/* Create a k-clique */
Create a k-clique



Algorithm

/* Find optimal number of colors */

k ← 1
while not colorable(G,k) do

k ← k+1
end while

/* Create a k-clique */
Create a k-clique



Algorithm

/* Find optimal number of colors */
k ← 1
while not colorable(G,k) do

k ← k+1
end while

/* Create a k-clique */
Create a k-clique



Algorithm

/* Find optimal number of colors */ O(kns)
k ← 1
while not colorable(G,k) do

k ← k+1
end while

/* Create a k-clique */
Create a k-clique



Algorithm

/* Find optimal number of colors */ O(kns)
k ← 1
while not colorable(G,k) do

k ← k+1
end while

/* Create a k-clique */

Create a k-clique



Algorithm

/* Find optimal number of colors */ O(kns)
k ← 1
while not colorable(G,k) do

k ← k+1
end while

/* Create a k-clique */
Create a k-clique



Algorithm

/* Find optimal number of colors */ O(kns)
k ← 1
while not colorable(G,k) do

k ← k+1
end while

/* Create a k-clique */ O(k2)
Create a k-clique



Algorithm (continued)

/* Color the vertices */
for i = 1 to n do

j ← 0
repeat

j ← j+1
connect vertex i to every vertex

in clique except vertex j
until colorable(G,k)
color[i] ← j

end for



Algorithm (continued)

/* Color the vertices */

for i = 1 to n do
j ← 0
repeat

j ← j+1
connect vertex i to every vertex

in clique except vertex j
until colorable(G,k)
color[i] ← j

end for



Algorithm (continued)

/* Color the vertices */
for i = 1 to n do

j ← 0
repeat

j ← j+1
connect vertex i to every vertex

in clique except vertex j
until colorable(G,k)
color[i] ← j

end for



Algorithm (continued)

/* Color the vertices */
for i = 1 to n do

j ← 0
repeat

j ← j+1
connect vertex i to every vertex

in clique except vertex j
until colorable(G,k)
color[i] ← j

end for



Algorithm (continued)

/* Color the vertices */ O(nk(k + (n + k)s))
for i = 1 to n do

j ← 0
repeat

j ← j+1
connect vertex i to every vertex

in clique except vertex j
until colorable(G,k)
color[i] ← j

end for



Analysis

T (n) = O(kns) + O(k2) + O(nk(k + (n + k)s))
= O(nns) + O(n2) + O(nn(n + (n + n)s))
= O(ns+1) + O(n2) + O(n3 + n2(2n)s))
= O(ns+1) + O(n2) + O(n3 + n22sns)
= O(ns+1) + O(n2) + O(n3 + ns+2)
= O(ns+2)



Analysis

T (n) = O(kns) + O(k2) + O(nk(k + (n + k)s))

= O(nns) + O(n2) + O(nn(n + (n + n)s))
= O(ns+1) + O(n2) + O(n3 + n2(2n)s))
= O(ns+1) + O(n2) + O(n3 + n22sns)
= O(ns+1) + O(n2) + O(n3 + ns+2)
= O(ns+2)



Analysis

T (n) = O(kns) + O(k2) + O(nk(k + (n + k)s))
= O(nns) + O(n2) + O(nn(n + (n + n)s))

= O(ns+1) + O(n2) + O(n3 + n2(2n)s))
= O(ns+1) + O(n2) + O(n3 + n22sns)
= O(ns+1) + O(n2) + O(n3 + ns+2)
= O(ns+2)



Analysis

T (n) = O(kns) + O(k2) + O(nk(k + (n + k)s))
= O(nns) + O(n2) + O(nn(n + (n + n)s))
= O(ns+1) + O(n2) + O(n3 + n2(2n)s))

= O(ns+1) + O(n2) + O(n3 + n22sns)
= O(ns+1) + O(n2) + O(n3 + ns+2)
= O(ns+2)



Analysis

T (n) = O(kns) + O(k2) + O(nk(k + (n + k)s))
= O(nns) + O(n2) + O(nn(n + (n + n)s))
= O(ns+1) + O(n2) + O(n3 + n2(2n)s))
= O(ns+1) + O(n2) + O(n3 + n22sns)

= O(ns+1) + O(n2) + O(n3 + ns+2)
= O(ns+2)



Analysis

T (n) = O(kns) + O(k2) + O(nk(k + (n + k)s))
= O(nns) + O(n2) + O(nn(n + (n + n)s))
= O(ns+1) + O(n2) + O(n3 + n2(2n)s))
= O(ns+1) + O(n2) + O(n3 + n22sns)
= O(ns+1) + O(n2) + O(n3 + ns+2)

= O(ns+2)



Analysis

T (n) = O(kns) + O(k2) + O(nk(k + (n + k)s))
= O(nns) + O(n2) + O(nn(n + (n + n)s))
= O(ns+1) + O(n2) + O(n3 + n2(2n)s))
= O(ns+1) + O(n2) + O(n3 + n22sns)
= O(ns+1) + O(n2) + O(n3 + ns+2)
= O(ns+2)


