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G = (V , E ), find a maximum independent set.

Is the independent set problem NP-complete?
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decision problem.

What do we need to do?

Find an analogous decision problem, and prove that the
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Decision Version

Decision version of the independent set problem:
Given an undirected graph G = (V , E ) and an integer k ,
does G have an independent of size k (or larger)?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.
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Proof of equivalence

Theorem
The optimization version of independent set is in P if and
only if the decision version of independent set is in P.

Proof.
( =⇒ ) Assume that the optimization version of
independent set is in P with time O(nr ). Given decision
problem for undirected graph G = (V , E ) with integer k :
(1) Run the the optimization version on G .
(2) Count the number of vertices.
(3) Compare to k .

Time O(nr ) + O(n) = O(nr ).
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/* Find the vertices */
Independent Set ← ∅
for i = 1 to n do

G’ ← G
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G ← G’

end if
end for
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Decision version of coloring problem:
Given an undirected graph G = (V , E ) and an integer k ,
can the vertices of G be colored with (at most) k colors
so that no two neighboring vertices have the same color?
Is the decision version analogous?
Two requirements:

The decision problem should feel like the optimization
problem. Yes.
The decision and optimization problems should be
equivalent up to polynomial time. Will show.
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Idea for algorithm

Assume that given G = (V , E ),
partial colorable(G,k,p) decides if the partial
coloring p of G can be extended to a k-coloring of G in
time O(ns).
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repeat
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color vertex i with color j in p

until partial colorable(G,k,p)
end for
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Donald Rumsfeld (Secretary of Defense) said:
... you go to war with the army you have, not the army you
might want or wish to have ...

With apologies to Rumsfeld:
You program with the library routine you have, not the library
routine you wish you had.

Another great Rumsfeld quote:
There are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we
know there are some things we do not know. But there are
also unknown unknowns ...
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/* Color the vertices */
for i = 1 to n do

j ← 0
repeat

j ← j+1
connect vertex i to every vertex

in clique except vertex j
until colorable(G,k)
color[i] ← j

end for
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Algorithm (continued)

/* Color the vertices */
for i = 1 to n do

j ← 0
repeat

j ← j+1
connect vertex i to every vertex

in clique except vertex j
until colorable(G,k)
color[i] ← j

end for



Algorithm (continued)

/* Color the vertices */ O(nk(k + (n + k)s))
for i = 1 to n do

j ← 0
repeat

j ← j+1
connect vertex i to every vertex

in clique except vertex j
until colorable(G,k)
color[i] ← j

end for



Analysis

T (n) = O(kns) + O(k2) + O(nk(k + (n + k)s))
= O(nns) + O(n2) + O(nn(n + (n + n)s))
= O(ns+1) + O(n2) + O(n3 + n2(2n)s))
= O(ns+1) + O(n2) + O(n3 + n22sns)
= O(ns+1) + O(n2) + O(n3 + ns+2)
= O(ns+2)
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