"How to have a bad research careen"

- 3 homench. 30%
- project - 40%
- midterm - 25%
- 5% participation

Why stuch paralee algorithm and d.s.?

- Morore's Law endimy "Dennard scalier"

- parallelism of concurency fundamental idear for how to do work (e). prodecing a compla object)
- suparset of serial algoithnsj underotand new apecter of - problem byy studging in peralled.
- Amount of date t analges not slomive
- genomies dota
- video/imere deta
(1) Multicore machinel exist!
- P cowes, $p x$ faster
facter p speede.
$\frac{t_{1}}{t_{p}}$
$\left(\frac{t^{*}}{t_{p}}\right) \leftarrow$ best e^{p} seq. running time
$O\left(n^{2}\right)$ operations
$O(n \log n)$ ppartions
(n-rn)
- Early apps were lavge-icde simulation

1961	$\frac{1 B M \text { Stretch: }}{1 M B \text { memar }}$
1972	
	Illiac IV:
	SCPUS 256 FPUS

$\rightarrow \operatorname{simD} \quad$ (single-instruction, multiple-data)

1973 Eispach: matrix eigenvalues
\rangle Lapack (Jack Dongarra)

1976 CRAY-1

- vector procersing capabilitic
\square \oplus
\qquad

1912: MSF algorithn (Böruke)

1968: $\frac{\text { BatcherSort / Bitonic Sort }}{\frac{p}{p}}$

$O\left(n \log ^{2} n\right)$ oparations

$$
O\left(\log ^{2} n\right) \frac{\text { delar }}{\text { rounss }}(H \text { steps })
$$

1975 : Valiant: Max, Marging and Sortiry

$$
O(\log \log n) \text { rounds } \underbrace{\Omega(\log n)}_{n \text { procesors }} \underbrace{\Omega(\log \log n)} \text { rond }
$$

1978: PRAM (wylie)

1979 : Circuit models (P-completenes, NC)

1980s: Golden age.

90-95: other model (Asynch PRAM)

$$
\begin{aligned}
& (\text { BSP - Valiant) } \\
& \uparrow \\
& \text { predecessor of MapRaduce }
\end{aligned}
$$

1995
Wosh/depth or Work/ span made.
\} Parallelism winter

2010
\int Resurgance. Lot of intercation work.
Present

RAM: Random Access Machine;

- how does an algorithm behave when oblate grows? $O\left(n^{2}\right)$ time vs $O(n \log n)$ time.

Paralled Models

PRAM Paralled Randon Accoes Machin

- Synchronous
- worlus in lochistep
- not paricalarin reelistic - fixed \# procesors
- schedule tark \rightarrow proce.iors?

Cost: - Running Time (p poreos, $)$

- Procesoors
total $\#$ instuations $=P T=$ work
Sorting in $O(\underbrace{\frac{n \log n}{p}}+\underbrace{\left.\log ^{2} n\right) \text { time } . ~}$
PRAM model: $E R$: can'l read sam locotion at the san fim
$E W$: " wite "
CR
CW
EREW, CREW, CRCW

Common
Arb
priovity

Connection Master
Vector Models Gur Blelloch's thesis

Cost: Work (element $\underset{\substack{\text { complexity }}}{ }=\sum_{s_{i} \in \text { Step }} \operatorname{length}\left(v_{i}\right)$
Ster complexity $=$ it steps executed by the perm

Eg. Sorting in $O\left(\log ^{2} n\right)$ steps
$O(n \log n)$ work
"Connection Machine" Boor

NEST
Circuit Model 1979 (Pippenger)

- view parallel comp. ar a cirucit (DAG)
Λ (and) and V (ow) gates

Cost: -size $=\#$ gatas

- depth

Sorting: (AKS netwank)
$O(n \log n)$ sire, $O(\log n)$ depon

$N C^{K}: \frac{\text { polynomids sizc }}{\text { circits with }} O\left(\log ^{n} n\right)$ depth

$$
N C=\bigcup_{k} N C^{k}
$$

