Merge (BF model)

$$
|A|=|B|=n
$$

Δ
B

$$
\begin{aligned}
& \frac{n}{\log (n)} \\
& o(1 \cdot g n)
\end{aligned}
$$

R

$$
\begin{aligned}
& \left(s_{a}, e_{a}\right) \\
& \left(s_{b}, c_{b}\right)
\end{aligned}
$$

k th (A, B, K) :
return indices $\left(l_{a}, l_{b}\right)$ sit. $l_{a}+l_{b}=k$
and all element in $A\left[0: l_{a}\right] \cup B\left[0: l_{b}\right]$
are $<$ all eft, in $A\left[l_{a}:|A|\right] \cup B\left[l_{b}:|B|\right]$

- Eth implementable sing a dual binary search in $O(\log |A|+\log |B|)$ time (wok and depth)

Use k, th t implement mary $(f(n)$-way splitting $)$
$\operatorname{Merge} F W_{\text {ag }}(A, B, R)=$
case (A, B) of

$$
\begin{aligned}
& ([],-) \Rightarrow \operatorname{copy} B+R \\
& (-,[]) \Rightarrow \operatorname{cop} A+R
\end{aligned}
$$

else \Rightarrow
$\left.l \longleftarrow \frac{|R|-1}{f(|R|)}+1\right\}$ problem size
parfor $;$ in $[0: f(\mathbb{R} \mid)]$:

$$
\begin{aligned}
& s \longleftarrow \min (i \cdot l,|R|) \\
& e \longleftarrow \min ((i+1) \cdot l,|R|) \\
& \left(s_{a}, s_{b}\right) \longleftarrow k \operatorname{kh}(A, B, s) \\
& \left(e_{a}, e_{b}\right) \longleftarrow \operatorname{kth}(A, B, e)
\end{aligned}
$$

$\operatorname{Merge} F \operatorname{Way}\left(A\left[s_{c}: e_{c}\right], B\left[s_{b}: e_{b}\right], R[s: c]\right)$ return

$f(n)$ - war divide-and-conquer

$$
\begin{aligned}
f(n) & =\sqrt{n} \\
w(n) & =\sqrt{n} \omega(\sqrt{n}) \\
D(n) & +\sqrt{n})+\underbrace{\sqrt{n} \log (n)}_{\text {parlor }} x_{k}+\log ^{\log (n)}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\log (n) \\
\frac{1}{2} \ln (n) \\
\frac{1}{1} \operatorname{lor}(n)
\end{array}\right\} 2 \log (n)
\end{aligned}
$$

$$
\begin{aligned}
& 2 \log _{0}(n) \\
& \in O(\log n) \\
&)(n) \in \theta(\log (n)) \\
& w(n)
\end{aligned}
$$

Another choice of $f(n): \quad f(n)=\frac{n}{\log (n)}$ and combine with sequential merglu
$\rightarrow O(n)$ work and $O\left(\log ^{n}\right)$ span (BF model).
$O(n)$ work / o $\log n)$ depth mary
d $O(n \log n)$ work, $O\left(\log ^{2} n\right)$ depth Marge Sot (BF).

Integer-based sorting: counting sort of radix sort -bypass the $\Omega(n \log n)$ lower bound for comparison-based sorting

Counting Sort:
Input: keys in the range $[0: m$] 3 phren:
(1) count hear that hen each pasible value
(2) compute effects for each key
(3) place each her in the correct paistion in the output.

Pserdocode:

$$
\begin{aligned}
& \text { Count Sort (A): } \\
& n=|A| \\
& m=\max (A) \\
& \text { counts }=\operatorname{arrag}(m, 0) \\
& \text { offsets }=\operatorname{arrar}(n, 0)
\end{aligned}
$$

for $i \operatorname{ir~}[0:|A|]$:

$$
\begin{aligned}
& a_{i}=A[i] \\
& \text { offsets }[i]=\text { counts }\left[a_{i}\right] \\
& \text { counts }\left[a_{i}\right]+t \\
& \text { plusscan }(\text { counts }) \\
& R=\operatorname{arrg}(n)
\end{aligned}
$$

parfor i in $[0:|A|]$:

$$
\begin{aligned}
& a_{i}=A[i] \\
& \text { offset }=\text { counts }\left[a_{i}\right]+\text { offsets }(i)
\end{aligned}
$$

$$
R[\text { offset }]=a_{i}
$$

return R

$$
\left.\begin{array}{l}
O(n+m) \text { work } \\
O(n+\log m) \text { depth }
\end{array}\right\} \begin{aligned}
& \text { efficient if } \\
& O(n) \\
& {\left[0: n^{c}\right] \quad}
\end{aligned} \quad c>1 \quad O(n) \text { sort? }
$$

Radix Sort

- repectede call courting sort.
- suppose our hess are in $\left[0: n^{c}\right]$

In round i, fr each key k, extract a $\underline{\text { round kerf }}=\frac{k}{n^{i}} \bmod n$
c rounds in total $\} O(n)$ work each $\Rightarrow \quad o(n c)$ worth in total

Open question is there a parclle intager sott thet russ in $O(n)$ wovk and polyloy spen for $k \in\left[0, n^{c}\right]$?

Thm: n integerr in $\left[0 ; n^{c}\right]$ in $O\left(\frac{n}{\alpha}\right)$ wosk and $O\left(\frac{n^{\alpha}}{\alpha}\right)$ spen

Buildimp Bl-ch 1: paralled count sarts fr n integess in $[0: m]$

Parcllel Count Sort (K, V, m) :

$$
\begin{aligned}
& n \leftarrow|k| \\
& b \leftarrow n / m
\end{aligned}
$$

parfor i in $[0: b]$
sequential

$$
c_{i} \leftarrow \operatorname{counts}(K[m i: m(i+1)], m)
$$

$0 \leftarrow$ plusscan (flattened transpose (c))
$0^{\prime} \leftarrow$ transpose (partition O into L-sind blocks)
$R \leftarrow$ carry of size $|k|$
porfor i in $[0: b$]

$$
\operatorname{place}\left(R, o_{i}^{\prime}, K[m i: m(i+1)], v[m i: m(i+1)], m\right)
$$

return R

Counts (k, m):
for $j \in[0: m]: c_{j} \leftarrow 0$
for $j \in[0: m]$

$$
\begin{aligned}
& k \leftarrow k_{j} \\
& c_{n} \leftarrow c_{n}+1
\end{aligned}
$$

return c

$$
\operatorname{place}(R, O, K, V, m):
$$

for $j \in[0: m]$

$$
\begin{aligned}
& k \leftarrow k j \\
& R\left[o_{k}\right] \leftarrow v_{j} \\
& o_{k} \leftarrow o_{k}+1
\end{aligned}
$$

Analysis :

- $\frac{n}{m}$ calls to counts/place
- O(m) work/ depth each
$\Rightarrow O(n)$ work, $O(m)$ depth
- plusscen, flatten, troncp-se: $O(n)$ wows
$o(\log n)$ depth
Overall: $O(n)$ work, $O(m+\log n)$ depth
To del with $m \gg \log (n)$ "chain" together ale sequential radix sort
-take subkegs in the range $\left[0: n^{\alpha}\right], 0<\alpha \leq 1$ \Rightarrow each CS call has $O(n)$ work. $O\left(n^{\alpha}\right)$ depth $\alpha \log (n)$ bits of the input key
$\Rightarrow \frac{c}{\alpha}$ calls in total

$$
\begin{aligned}
& \text { In total: } O\left(\frac{n}{\alpha}\right) \text { work } \\
& O\left(\frac{n^{\alpha}}{\alpha}\right) \text { depth }
\end{aligned}
$$

$$
\left[\begin{array}{rl}
{\left[0: n \log ^{k} n\right] \Rightarrow} & O(k n) \text { work } \\
& \text { polylog }(n) \text { depth }
\end{array}\right.
$$

