

hiven a tree T, an Euderian wirent (or Eulen tour) is E's a walk on the directed tree T' that (1) with all the vertices and (2) doent repear any edge.

$$\begin{aligned} \forall noder \quad \forall \in V : \\ \forall arcs \quad f \quad (u_i, v) \quad | \quad u_i \in N(v) \; f : \\ succ \quad (Lu_i, v) \; f = \quad (v_j \quad u_{i+1} \; mod \; deg(v) \;) \end{aligned}$$

ET construction in O(n) work, O(lyn) depth.

Lemme : It nodes in T. decrease by a constant fate
in expectation after applying Contract.

$$T_0 = \operatorname{set} \operatorname{af}$$
 leaves (art-dyne 0)
 $T_1 = \operatorname{set} \operatorname{f}$ using radie (at-dyne 1)
 $T_2 = \operatorname{set} \operatorname{cf}$ binang radie (at-dyne 2)
 $V = T_0 \cup T_1 \cup T_2$
Claim : $|T_0| = |T_2| + 1$
 \mathbb{P} : every induction on n (or builds for $n = 1$)
 $C : \operatorname{cf} r i_1 = \operatorname{binang}$ node.
 $(T_0 : |T_0| = |T_2| + 1)$
 $C : \operatorname{cf} r i_1 = \operatorname{binang}$ node.
 $(T_0 : |T_0| = |T_2| + 1)$
 $(T_0 : |T_0| = |T_2| + 1)$
 $T_0 : (T_0 : |T_0| = |T_2| + 1)$
 $(T_0 : |T_0| = |T_2| + 1)$
 $T_0 : T_2$
 $(T_0 : |T_0| + |T_0| = (|T_2| + |T_2| + 1) + 1)$
 $T_0 : T_2$
 $(\operatorname{claim} : \operatorname{Randem}$ (ain Tossing in Contract will generate
 $T_1 : = \operatorname{chosen} (T_1 : |T_1| : n)$ exponents

Consider
$$v \in T_1$$
. $X_v = 1.R, V$. that's (1) if v is compared
 $T \longrightarrow 0$
 $v \in T_1$
 $P(v \in T_1) = \frac{1}{4}$ $(coin(pred(v)) = T, coin(v) = H)$
 $E(|T_1|] = E\left[\sum_{v \in T_1} X_v\right] = \frac{1}{4} |T_1|$
Let $n = \#$ nodes before (content
 $v' = \#$ nodes offer:
Claim: $E(n^2] \leq \frac{3n}{4}$
 $E(n'] \leq |T_2| + \frac{3}{4} |T_1|$
 $\leq \frac{3}{4} + \frac{2}{4} |T_1| + \frac{3}{2} |T_2|$
 $= \frac{3}{4} (1 + |T_1| + 2|T_2|)$
 $= \frac{7}{4} (|T_0| + |T_1| + |T_2|)$
 $= \frac{7}{4} (1 + |T_1| + |T_2|)$