Trea rooting roblam: application of the "Eulen Tar Techarige" Input: unvoted tree T, derijnated root r Output: $\forall v \in T, v \neq v$ them perent $p(v) \in T$ of v in T rooted at r

This problen is solvable using Euler Tous Technique Lit Rankiry

$$
(r, 4),(4, r),(r, s)(5, r) \ldots
$$

T
undirated

T^{\prime}
directed
where f each (u, v) edpe, we intratice too dirated ddp $\{(u, v),(v, u)\}$

Given a tree T, an Eudurian circus (or Euler four) is E, a walk on the directed tree T^{\prime} that (1) visit all the verficon and (i) docent repeat any cope.

For each $v \in V$, fix an ordain on

$$
N(v)=\left\{u_{0}, u_{1}, \ldots, u_{d_{j}(v)-1}\right\}
$$

\forall node $v \in V$:

$$
\begin{aligned}
& \forall \operatorname{arcs}\left\{\left(u_{i}, v\right) \mid u_{i} \in N(v)\right\}: \\
& \operatorname{succ}\left(\left(u_{i}, v\right)\right)=\left(v, u_{i+1} \bmod \operatorname{deg}(v)\right)
\end{aligned}
$$

ET constration in $O(n)$ work, $O(\lg n)$ depth.

second copy is the orientation tonal the root.

Prioritr-write $(8 m, v)$:
\uparrow if $(m \rightarrow v a l>v)$:
atomially updote maval $=v$
weill see th: later

reduce
Euler Tour Techrige (ETT)

- dynamic tree : Euker Tour Tress
- prelpostfin-order traversal
- height of a node
(10)

CRCW-PRAM with Prionity-write

Random-Incremental.

Tree $O(n \operatorname{loj}(n))$
linlud-list (Evler twr) \downarrow
Li,t-Rankiary

- subtree sums

Parallel Tree Contration: Miller-Reif (80s)

link lcot
Quen: are (n.v) in the sam tree?

Tsee contrection yieldo an ffficient soln. t dynamic tree problem ($R C$-trees).

Look at this more geneal problem of tree contrition.
Defoe: Tree Contraction Sequence: $T_{1}, T_{2}, \ldots, T_{k}$
(1) $T_{1}=T$
(2) $v\left(T_{i}\right) \subseteq v\left(T_{i-1}\right)$
(3) $\left|v\left(T_{n}\right)\right| \notin O(1)$

(4) If $v \in T_{i-1}-T_{i}$ (ie. v is removed in T_{i}) the- either:
(a) $v i s$ a leaf of T_{i-1} or
(b) v has exactly one child in T_{i-1}, x, and $p(v) \in T_{i-1}$ is the
 parent of x in T_{i}
(a)

"rake" operation (raking leaver)
T_{i-1}
(b)
 "compress" v.
$T_{1} T_{k} \quad k=$ length of free contrasts sequence

$$
\log _{0}(n)-1 \leq k \leq n-1
$$

$$
k \in O(\operatorname{lo}, n)
$$

Idea:

(i)
(ii)
interleave raking all leaves with compress operation
enough to handle balanced trees in $0\left(1-, n^{n}\right)$ steps.
necessen for lome chains

Contract: // two confer traction steps

- rake all the leaves
- \forall unary nodes, flip coins.
- if $\operatorname{coin}(n)=T, \operatorname{coin}(\operatorname{succ}(n))=H$ then

(1) compress $(\operatorname{succ}(u))$

Lemme: $\#$ nodes in T decreases h_{y} a constant fortror in expectation after applying Contract.

- $T_{0}=$ set of leaves (art-dgree 0)
- $T_{1}=$ set f unary nodes (out-dgrec 1)
. $T_{2}=$ set of binan node (at-dgrec 2)
$V=T_{0} \cup T_{1} \cup T_{2}$

Claim: $\quad\left|T_{0}\right|=\left|T_{2}\right|+1$
Pf: starr induction on n (BC holds for $n=1$)
(a) if $s i$ unary, do we lur $1 H$.
(b) if r is a binary node.

$$
\begin{aligned}
& \left|T_{0}^{L}\right|=\left|T_{2}^{L}\right|+1 \\
& \left|T_{0}^{R}\right|=\left|T_{2}^{R}\right|+1
\end{aligned}
$$

$$
\underbrace{\left|T_{0}^{2}\right|+\left|T_{0}^{R}\right|}_{T_{0}}=(\underbrace{\left(T_{2}^{2}\left|+\left|T_{2}^{R}\right|+1\right)+1\right.}_{T_{2}} D
$$

Claim: Random Coin Tossing in Contract will generate a- independent set $I, \subseteq T$, if size

$$
\left|I_{1}\right| \geq \frac{1}{4}\left(T_{1}\right) \text { in expratation }
$$

Consider $v \in T_{1} . \quad X_{v}=1 . R, V$. that's 1 iff v is compresed

$$
\begin{aligned}
& P[v \in I,]=\frac{1}{4} \quad(\operatorname{coin}(\text { prod }(v))=T, \operatorname{coin}(v)=H) \\
& E\left[\left|I_{1}\right|\right]=E\left[\sum_{v \in T_{1}} X_{v}\right]=\frac{1}{4}\left|T_{1}\right| \quad \checkmark
\end{aligned}
$$

Let $n=\#$ nodes before Contant

$$
n^{\prime}=\# \text { nodes fter: }
$$

Clain: $\quad E\left[n^{1}\right] \leq \frac{3 n}{4}$

$$
\begin{aligned}
E\left[n^{\prime}\right] & \leq\left|T_{2}\right|+\frac{3}{4}\left|T_{1}\right| \\
& \leq \frac{3}{4}+\frac{3}{4}\left|T_{1}\right|+\frac{3}{2}\left|T_{2}\right| \\
& =\frac{3}{4}\left(1+\left|T_{1}\right|+2\left|T_{2}\right|\right) \\
& =\frac{3}{4}\left(\left|T_{0}\right|+\left|T_{1}\right|+\left|T_{2}\right|\right) \\
& =\frac{3}{4} n
\end{aligned}
$$

